Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
EMBO J ; 41(21): e110372, 2022 11 02.
Article in English | MEDLINE | ID: mdl-36124865

ABSTRACT

In a genome-wide screening for components of the dsDNA-break-induced IKK-NF-κB pathway, we identified scores of regulators, including tumor susceptibility gene TSG101. TSG101 is essential for DNA damage-induced formation of cellular poly(ADP-ribose) (PAR). TSG101 binds to PARP1 and is required for PARP1 activation. This function of TSG101 is independent of its role in the ESCRT-I endosomal sorting complex. In the absence of TSG101, the PAR-dependent formation of a nuclear PARP1-IKKγ signalosome, which triggers IKK activation, is impaired. According to its requirement for PARP1 and NF-κB activation, TSG101-deficient cells are defective in DNA repair and apoptosis protection. Loss of TSG101 results in PARP1 trapping at damage sites and mimics the effect of pharmacological PARP inhibition. We also show that the loss of TSG101 in connection with inactivated tumor suppressors BRCA1/2 in breast cancer cells is lethal. Our results imply TSG101 as a therapeutic target to achieve synthetic lethality in cancer treatment.


Subject(s)
NF-kappa B , Poly ADP Ribosylation , NF-kappa B/metabolism , Poly (ADP-Ribose) Polymerase-1/metabolism , DNA Damage , DNA Repair , Endosomal Sorting Complexes Required for Transport/metabolism
2.
EMBO J ; 41(13): e109996, 2022 07 04.
Article in English | MEDLINE | ID: mdl-35767364

ABSTRACT

Helicobacter pylori is a pathogen that colonizes the stomach and causes chronic gastritis. Helicobacter pylori can colonize deep inside gastric glands, triggering increased R-spondin 3 (Rspo3) signaling. This causes an expansion of the "gland base module," which consists of self-renewing stem cells and antimicrobial secretory cells and results in gland hyperplasia. The contribution of Rspo3 receptors Lgr4 and Lgr5 is not well explored. Here, we identified that Lgr4 regulates Lgr5 expression and is required for H. pylori-induced hyperplasia and inflammation, while Lgr5 alone is not. Using conditional knockout mice, we reveal that R-spondin signaling via Lgr4 drives proliferation of stem cells and also induces NF-κB activity in the proliferative stem cells. Upon exposure to H. pylori, the Lgr4-driven NF-κB activation is responsible for the expansion of the gland base module and simultaneously enables chemokine expression in stem cells, resulting in gland hyperplasia and neutrophil recruitment. This demonstrates a connection between R-spondin-Lgr and NF-κB signaling that links epithelial stem cell behavior and inflammatory responses to gland-invading H. pylori.


Subject(s)
Helicobacter pylori , Animals , Hyperplasia/metabolism , Hyperplasia/pathology , Inflammation/pathology , Mice , NF-kappa B/metabolism , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Stem Cells/metabolism , Stomach
3.
Development ; 148(21)2021 11 01.
Article in English | MEDLINE | ID: mdl-34751748

ABSTRACT

Although the role of the transcription factor NF-κB in intestinal inflammation and tumor formation has been investigated extensively, a physiological function of NF-κB in sustaining intestinal epithelial homeostasis beyond inflammation has not been demonstrated. Using NF-κB reporter mice, we detected strong NF-κB activity in Paneth cells, in '+4/+5' secretory progenitors and in scattered Lgr5+ crypt base columnar stem cells of small intestinal (SI) crypts. To examine NF-κB functions in SI epithelial self-renewal, mice or SI crypt organoids ('mini-guts') with ubiquitously suppressed NF-κB activity were used. We show that NF-κB activity is dispensable for maintaining SI epithelial proliferation, but is essential for ex vivo organoid growth. Furthermore, we demonstrate a dramatic reduction of Paneth cells in the absence of NF-κB activity, concomitant with a significant increase in goblet cells and immature intermediate cells. This indicates that NF-κB is required for proper Paneth versus goblet cell differentiation and for SI epithelial homeostasis, which occurs via regulation of Wnt signaling and Sox9 expression downstream of NF-κB. The current study thus presents evidence for an important role for NF-κB in intestinal epithelial self-renewal.


Subject(s)
Goblet Cells/cytology , Intestine, Small/cytology , NF-kappa B/metabolism , Paneth Cells/cytology , Animals , Cell Differentiation , Cell Self Renewal , Goblet Cells/metabolism , Homeostasis , Intestinal Mucosa/cytology , Intestinal Mucosa/metabolism , Intestine, Small/metabolism , Intestine, Small/pathology , Mice , NF-kappa B/genetics , Organoids/cytology , Organoids/growth & development , Organoids/metabolism , Paneth Cells/metabolism , SOX9 Transcription Factor/metabolism , Stem Cells/cytology , Stem Cells/metabolism , Wnt Proteins/metabolism , Wnt Signaling Pathway
4.
EMBO J ; 40(6): e104296, 2021 03 15.
Article in English | MEDLINE | ID: mdl-33459422

ABSTRACT

The IκB kinase (IKK)-NF-κB pathway is activated as part of the DNA damage response and controls both inflammation and resistance to apoptosis. How these distinct functions are achieved remained unknown. We demonstrate here that DNA double-strand breaks elicit two subsequent phases of NF-κB activation in vivo and in vitro, which are mechanistically and functionally distinct. RNA-sequencing reveals that the first-phase controls anti-apoptotic gene expression, while the second drives expression of senescence-associated secretory phenotype (SASP) genes. The rapidly activated first phase is driven by the ATM-PARP1-TRAF6-IKK cascade, which triggers proteasomal destruction of inhibitory IκBα, and is terminated through IκBα re-expression from the NFKBIA gene. The second phase, which is activated days later in senescent cells, is on the other hand independent of IKK and the proteasome. An altered phosphorylation status of NF-κB family member p65/RelA, in part mediated by GSK3ß, results in transcriptional silencing of NFKBIA and IKK-independent, constitutive activation of NF-κB in senescence. Collectively, our study reveals a novel physiological mechanism of NF-κB activation with important implications for genotoxic cancer treatment.


Subject(s)
Cellular Senescence/physiology , I-kappa B Kinase/metabolism , NF-KappaB Inhibitor alpha/biosynthesis , Transcription Factor RelA/metabolism , Transcription, Genetic/genetics , Animals , Apoptosis/genetics , Cell Line , Cell Proliferation/genetics , DNA Breaks, Double-Stranded , DNA Repair/genetics , Female , Gene Silencing/physiology , Glycogen Synthase Kinase 3 beta/metabolism , HEK293 Cells , Humans , Mice , Mice, Inbred C57BL , NF-KappaB Inhibitor alpha/genetics , Phosphorylation , Proteasome Endopeptidase Complex/metabolism
5.
J Pathol ; 251(2): 160-174, 2020 06.
Article in English | MEDLINE | ID: mdl-32222043

ABSTRACT

The IκB kinase (IKK)-NF-κB signaling pathway plays a multifaceted role in inflammatory bowel disease (IBD): on the one hand, it protects from apoptosis; on the other, it activates transcription of numerous inflammatory cytokines and chemokines. Although several murine models of IBD rely on disruption of IKK-NF-κB signaling, these involve either knockouts of a single family member of NF-κB or of upstream kinases that are known to have additional, NF-κB-independent, functions. This has made the distinct contribution of NF-κB to homeostasis in intestinal epithelium cells difficult to assess. To examine the role of constitutive NF-κB activation in intestinal epithelial cells, we generated a mouse model with a tissue-specific knockout of the direct inhibitor of NF-κB, Nfkbia/IκBα. We demonstrate that constitutive activation of NF-κB in intestinal epithelial cells induces several hallmarks of IBD including increased apoptosis, mucosal inflammation in both the small intestine and the colon, crypt hyperplasia, and depletion of Paneth cells, concomitant with aberrant Wnt signaling. To determine which NF-κB-driven phenotypes are cell-intrinsic, and which are extrinsic and thus require the immune compartment, we established a long-term organoid culture. Constitutive NF-κB promoted stem-cell proliferation, mis-localization of Paneth cells, and sensitization of intestinal epithelial cells to apoptosis in a cell-intrinsic manner. Increased number of stem cells was accompanied by a net increase in Wnt activity in organoids. Because aberrant Wnt signaling is associated with increased risk of cancer in IBD patients and because NFKBIA has recently emerged as a risk locus for IBD, our findings have critical implications for the clinic. In a context of constitutive NF-κB, our findings imply that general anti-inflammatory or immunosuppressive therapies should be supplemented with direct targeting of NF-κB within the epithelial compartment in order to attenuate apoptosis, inflammation, and hyperproliferation. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Subject(s)
Apoptosis , Inflammatory Bowel Diseases/metabolism , Intestine, Small/metabolism , NF-KappaB Inhibitor alpha/deficiency , Paneth Cells/metabolism , Stem Cells/metabolism , Animals , Cells, Cultured , Cytokines/metabolism , Inflammatory Bowel Diseases/genetics , Inflammatory Bowel Diseases/pathology , Intestine, Small/pathology , Mice, Knockout , NF-KappaB Inhibitor alpha/genetics , Organoids/metabolism , Organoids/pathology , Paneth Cells/pathology , Stem Cells/pathology , Transcription Factor RelA/metabolism , Wnt Signaling Pathway
6.
Blood ; 133(13): 1489-1494, 2019 03 28.
Article in English | MEDLINE | ID: mdl-30696620

ABSTRACT

Persistent NF-κB activation is a hallmark of the malignant Hodgkin/Reed-Sternberg (HRS) cells in classical Hodgkin lymphoma (cHL). Genomic lesions, Epstein-Barr virus infection, soluble factors, and tumor-microenvironment interactions contribute to this activation. Here, in an unbiased approach to identify the cHL cell-secreted key factors for NF-κB activation, we have dissected the secretome of cultured cHL cells by chromatography and subsequent mass spectrometry. We identified lymphotoxin-α (LTA) as the causative factor for autocrine and paracrine activation of canonical and noncanonical NF-κB in cHL cell lines. In addition to inducing NF-κB, LTA promotes JAK2/STAT6 signaling. LTA and its receptor TNFRSF14 are transcriptionally activated by noncanonical NF-κB, creating a continuous feedback loop. Furthermore, LTA shapes the expression of cytokines, receptors, immune checkpoint ligands and adhesion molecules, including CSF2, CD40, PD-L1/PD-L2, and VCAM1. Comparison with single-cell gene-activity profiles of human hematopoietic cells showed that LTA induces genes restricted to the lymphoid lineage, as well as those largely restricted to the myeloid lineage. Thus, LTA sustains autocrine NF-κB activation, impacts activation of several signaling pathways, and drives expression of genes essential for microenvironmental interactions and lineage ambiguity. These data provide a robust rationale for targeting LTA as a treatment strategy for cHL patients.


Subject(s)
Hodgkin Disease/immunology , Janus Kinase 2/immunology , Lymphotoxin-alpha/immunology , NF-kappa B/immunology , STAT6 Transcription Factor/immunology , Cell Line , Gene Expression Regulation, Neoplastic , Hodgkin Disease/genetics , Humans , Lymphotoxin-alpha/genetics , Reed-Sternberg Cells/immunology , Reed-Sternberg Cells/metabolism , Signal Transduction , Transcriptional Activation
7.
EMBO J ; 37(24)2018 12 14.
Article in English | MEDLINE | ID: mdl-30467221

ABSTRACT

The IκB kinase (IKK) is considered to control gene expression primarily through activation of the transcription factor NF-κB. However, we show here that IKK additionally regulates gene expression on post-transcriptional level. IKK interacted with several mRNA-binding proteins, including a Processing (P) body scaffold protein, termed enhancer of decapping 4 (EDC4). IKK bound to and phosphorylated EDC4 in a stimulus-sensitive manner, leading to co-recruitment of P body components, mRNA decapping proteins 1a and 2 (DCP1a and DCP2) and to an increase in P body numbers. Using RNA sequencing, we identified scores of transcripts whose stability was regulated via the IKK-EDC4 axis. Strikingly, in the absence of stimulus, IKK-EDC4 promoted destabilization of pro-inflammatory cytokines and regulators of apoptosis. Our findings expand the reach of IKK beyond its canonical role as a regulator of transcription.


Subject(s)
I-kappa B Kinase/metabolism , Multiprotein Complexes/metabolism , Proteins/metabolism , RNA Stability , RNA, Messenger/metabolism , Endoribonucleases/genetics , Endoribonucleases/metabolism , HEK293 Cells , Hep G2 Cells , Humans , I-kappa B Kinase/genetics , Multiprotein Complexes/genetics , Proteins/genetics , RNA, Messenger/genetics , Trans-Activators/genetics , Trans-Activators/metabolism
8.
Cell Cycle ; 11(12): 2391-401, 2012 Jun 15.
Article in English | MEDLINE | ID: mdl-22627671

ABSTRACT

Numerous stimuli, including oncogenic signaling, DNA damage or eroded telomeres trigger proliferative arrest, termed cellular senescence. Accumulating evidence suggests that cellular senescence is a potent barrier to tumorigenesis in vivo, however oncogene induced senescence can also promote cellular transformation. Several oncogenes, whose overexpression results in cellular senescence, converge on the TOR (target of rapamycin) pathway. We therefore examined whether attenuation of TOR results in delay or reversal of cellular senescence. By using primary human fibroblasts undergoing either replicative or oncogenic RAS-induced senescence, we demonstrated that senescence can be delayed, and some aspects of senescence can be reversed by inhibition of TOR, using either the TOR inhibitor rapamycin or by depletion of TORC1 (TOR Complex 1). Depletion of TORC2 fails to affect the course of replicative or RAS-induced senescence. Overexpression of REDD1 (Regulated in DNA Damage Response and Development), a negative regulator of TORC1, delays the onset of replicative senescence. These results indicate that TORC1 is an integral component of the signaling pathway that mediates cellular senescence.


Subject(s)
Cellular Senescence/drug effects , Transcription Factors/metabolism , ras Proteins/metabolism , Cells, Cultured , Fibroblasts/metabolism , Humans , RNA Interference , RNA, Small Interfering/metabolism , Signal Transduction , Sirolimus/pharmacology , Transcription Factors/antagonists & inhibitors , Transcription Factors/genetics
9.
Cell Cycle ; 10(5): 771-5, 2011 Mar 01.
Article in English | MEDLINE | ID: mdl-21311223

ABSTRACT

PLZF can function as a transcriptional activator or as a transcriptional repressor. Recent studies have identified two direct transcriptional targets of PLZF, REDD1 and smooth muscle α-actin. REDD1 is activated by PLZF. It mediates the PLZF-dependent downregulation of TORC1 and is responsible for the maintenance of pluripotency in cultures of spermatogonial progenitor cells. This activity may extend to other stem-like cell types. The effect of REDD1 on TORC1 also raises the possibility that REDD1 controls cell growth, tumorigenicity and senescence. The regulatory loop extending from PLZF via REDD1 to TORC1 identifies REDD1 as a critical determinant of TOR activity. The transcription of smooth muscle α-actin is repressed by PLZF. In fibroblasts, this downregulation is accompanied by a change of cell shape and a dramatic reorganization of the cytoskeleton. It is also correlated with the acquisition of cellular resistance to oncogenic transformation. The resistance is selective, it works against some oncoproteins but not against others. The molecular mechanisms underlying the changes in the cytoskeleton and in the susceptibility to oncogenic transformation are unknown. However these changes are dependent on the activity of RAS and thus probably involve the RAC/RHO family of proteins.


Subject(s)
Actins/genetics , Cellular Senescence , Kruppel-Like Transcription Factors/metabolism , Transcription Factors/genetics , Actins/metabolism , Animals , Cytoskeleton , Fibroblasts/metabolism , Humans , Kruppel-Like Transcription Factors/genetics , Male , Mice , Muscle, Smooth/metabolism , Promyelocytic Leukemia Zinc Finger Protein , Signal Transduction , Spermatogonia/cytology , Spermatogonia/metabolism , Stem Cells/metabolism , Transcription Factors/metabolism , Tumor Suppressor Proteins/metabolism
10.
Nucleic Acids Res ; 39(6): 2378-92, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21071418

ABSTRACT

Alternative splicing enables higher eukaryotes to increase their repertoire of proteins derived from a restricted number of genes. However, the possibility that functional diversity may also be augmented by splicing between adjacent genes has been largely neglected. Here, we show that the human melanocortin 1 receptor (MC1R) gene, a critical component of the facultative skin pigmentation system, has a highly complex and inefficient poly(A) site which is instrumental in allowing intergenic splicing between this locus and its immediate downstream neighbour tubulin-ß-III (TUBB3). These transcripts, which produce two distinct protein isoforms localizing to the plasma membrane and the endoplasmic reticulum, seem to be restricted to humans as no detectable chimeric mRNA could be found in MC1R expressing mouse melanocytes. Significantly, treatment with the MC1R agonist α-MSH or activation of the stress response kinase p38-MAPK, both key molecules associated with ultraviolet radiation dermal insult and subsequent skin tanning, result in a shift in expression from MC1R in favour of chimeric MC1R-TUBB3 isoforms in cultured melanocytes. We propose that these chimeric proteins serve to equip melanocytes with novel cellular phenotypes required as part of the pigmentation response.


Subject(s)
Alternative Splicing , Melanocytes/metabolism , Receptor, Melanocortin, Type 1/genetics , Tubulin/genetics , alpha-MSH/pharmacology , Animals , Base Sequence , Cell Line, Tumor , Cell Membrane/metabolism , HEK293 Cells , Humans , MAP Kinase Kinase 6/metabolism , Melanocytes/drug effects , Melanocytes/enzymology , Mice , Molecular Sequence Data , RNA 3' End Processing , RNA, Messenger/chemistry , RNA, Messenger/metabolism , Receptor, Melanocortin, Type 1/metabolism , Tubulin/metabolism
11.
Mol Cell Biol ; 27(16): 5746-64, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17562867

ABSTRACT

The tuberous sclerosis complex (TSC) proteins TSC1 and TSC2 regulate protein translation by inhibiting the serine/threonine kinase mTORC1 (for mammalian target of rapamycin complex 1). However, how TSC1 and TSC2 control overall protein synthesis and the translation of specific mRNAs in response to different mitogenic and nutritional stimuli is largely unknown. We show here that serum withdrawal inhibits mTORC1 signaling, causes disassembly of translation initiation complexes, and causes mRNA redistribution from polysomes to subpolysomes in wild-type mouse embryo fibroblasts (MEFs). In contrast, these responses are defective in Tsc1(-/-) or Tsc2(-/-) MEFs. Microarray analysis of polysome- and subpolysome-associated mRNAs uncovered specific mRNAs that are translationally regulated by serum, 90% of which are TSC1 and TSC2 dependent. Surprisingly, the mTORC1 inhibitor, rapamycin, abolished mTORC1 activity but only affected approximately 40% of the serum-regulated mRNAs. Serum-dependent signaling through mTORC1 and polysome redistribution of global and individual mRNAs were restored upon re-expression of TSC1 and TSC2. Serum-responsive mRNAs that are sensitive to inhibition by rapamycin are highly enriched for terminal oligopyrimidine and for very short 5' and 3' untranslated regions. These data demonstrate that the TSC1/TSC2 complex regulates protein translation through mainly mTORC1-dependent mechanisms and implicates a discrete profile of deregulated mRNA translation in tuberous sclerosis pathology.


Subject(s)
Protein Biosynthesis/genetics , RNA 5' Terminal Oligopyrimidine Sequence/genetics , Serum , Tumor Suppressor Proteins/metabolism , 5' Untranslated Regions/metabolism , Animals , Embryo, Mammalian/cytology , Embryo, Mammalian/drug effects , Embryo, Mammalian/metabolism , Fibroblasts/cytology , Fibroblasts/drug effects , Fibroblasts/metabolism , Food , Gene Expression Regulation/drug effects , Growth Substances/pharmacology , Humans , Mechanistic Target of Rapamycin Complex 1 , Mice , Multiprotein Complexes , Polyribosomes/drug effects , Protein Biosynthesis/drug effects , Proteins , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reproducibility of Results , Signal Transduction/drug effects , Sirolimus/pharmacology , TOR Serine-Threonine Kinases , Transcription Factors/metabolism , Tuberous Sclerosis Complex 1 Protein , Tuberous Sclerosis Complex 2 Protein , Tumor Suppressor Proteins/deficiency
12.
Mol Cell Biol ; 25(19): 8465-75, 2005 Oct.
Article in English | MEDLINE | ID: mdl-16166629

ABSTRACT

PDK-1 is a protein kinase that is critical for the activation of many downstream protein kinases in the AGC superfamily, through phosphorylation of the activation loop site on these substrates. Cells lacking PDK-1 show decreased activity of these protein kinases, including protein kinase B (PKB) and p70S6K, whereas mTOR activity remains largely unaffected. Here we show, by assessing both association of cellular RNAs with polysomes and by metabolic labeling, that PDK-1-/- embryonic stem (ES) cells exhibit defects in mRNA translation. We identify which mRNAs are most dramatically translationally regulated in cells lacking PDK-1 expression by performing microarray analysis of total and polysomal RNA in these cells. In addition to the decreased translation of many RNAs, a smaller number of RNAs show increased association with polyribosomes in PDK-1-/- ES cells relative to PDK-1+/+ ES cells. We show that PKB activity is a critical downstream component of PDK-1 in mediating translation of cystatin C, RANKL, and Rab11a, whereas mTOR activity is less important for effective translation of these targets.


Subject(s)
Embryo, Mammalian/cytology , Gene Expression Regulation, Developmental , Protein Biosynthesis , Protein Serine-Threonine Kinases/genetics , Stem Cells/cytology , 3-Phosphoinositide-Dependent Protein Kinases , Animals , Blotting, Western , Carrier Proteins/metabolism , Cystatin C , Cystatins/metabolism , Electrophoresis, Polyacrylamide Gel , Enzyme Activation , Humans , Membrane Glycoproteins/metabolism , Mice , Mice, Transgenic , Oligonucleotide Array Sequence Analysis , Phosphorylation , Polyribosomes/metabolism , Protein Kinases/metabolism , RANK Ligand , RNA/chemistry , RNA/metabolism , RNA, Messenger/metabolism , Receptor Activator of Nuclear Factor-kappa B , Reverse Transcriptase Polymerase Chain Reaction , Ribosomal Protein S6 Kinases, 70-kDa/metabolism , Ribosomes/metabolism , Sucrose/pharmacology , TOR Serine-Threonine Kinases , Time Factors , rab GTP-Binding Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...