Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 15(19)2022 Oct 08.
Article in English | MEDLINE | ID: mdl-36234321

ABSTRACT

During mining, only 4-8% is converted to final products, and the rest is accumulated in landfills. There is a lack of research on the study of various patterns and mechanisms of the formation of cement clinker minerals during the simultaneous distillation of zinc. This paper presents studies of thermodynamic stimulation of environmental and population protection by utilization of technogenic enrichment waste as secondary raw materials for clinker production and zinc extraction. In particular, a comparison of the Gibbs energy (ΔG) of clinker formation under standard chemical equations and under non-standard chemical equations is given. According to the results of the study, using thermodynamic simulation, the temperature intervals of mineral formation, the dependence of the Gibbs energy on temperature (ΔGT°), and the approximation equations were found; it was established that the presence of zinc ferrite contributes to the intensification of the formation of clinker minerals and the extraction of Zn to gas.

2.
Materials (Basel) ; 15(16)2022 Aug 19.
Article in English | MEDLINE | ID: mdl-36013864

ABSTRACT

In the study, experimental and theoretical studies were carried out to assess the influence of the shapes of dents in the tank wall on the stress-strain state of the defect zone. By testing fragments of a cylindrical tank, it was found that the most appropriate expression is (5), which could take into account the leaching of the tank wall, resulting in a decrease in the stress concentration index. At the same time, during theoretical studies in this paper, it was found that polynomials determined the stress concentration coefficient, where the obtained analytical expression data were compared with the data determined numerically in the ANSYS program, and it was found that the spread was from 2% to 10%. According to the results of a numerical study of the stress-strain state of the dent zone in the tank wall, graphical dependences of the stress concentration coefficient on the dimensionless depth of the dent for various values of the dimensionless radius of the dents and do not exceed 2% of the indicators that are obtained. At the conclusion of the experimental and numerical studies, a conclusion was made about the degree of influence of the geometric dimensions of the dents on the stress concentration index.

3.
Materials (Basel) ; 15(14)2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35888398

ABSTRACT

This article describes a technology for the thermomechanical treatment of stainless-steel piston rings. This technology makes it possible to obtain rings with an optimal combination of plastic and strength properties that is essential for piston rings. The following thermomechanical treatment is suggested for piston rings manufacturing: quenching at 1050 °C, holding for 30 min and cooling in water, then straining by the HPT method for eight cycles at cryogenic temperature and annealing at a temperature up to 600 °C. The resulting microstructure consisted of fine austenite grains sized 0.3 µm and evenly distributed carbide particles. Annealing above this temperature led to the formation of ferrite in the structure; however, preserving the maximum fraction of austenitic component is very important, since the reduction of austenite in the structure will cause a deterioration of corrosion resistance. The strength properties of steel after such treatment increased by almost two times compared with the initial ones: microhardness increased from 980 MPa to 2425 MPa, relative elongation increased by 20%. The proposed technology will improve the strength and performance characteristics of piston rings, as well as increase their service life, which will lead to significant savings in the cost of repair, replacement and downtime.

4.
Materials (Basel) ; 15(14)2022 Jul 18.
Article in English | MEDLINE | ID: mdl-35888463

ABSTRACT

The paper presents the results of experimental studies of the features of the operation of prestressed shells, taking into account the various structural parameters of the prestress. It is established that when the winding angle changes from perpendicular to the shell axis to 75° and 65°, the circumferential stresses decrease 1.4 times and 1.2 times, respectively, and the axial stresses increase five and three times, which are two and four times lower than the circumferential, from which it can be concluded that the reduction in the winding angle to the longitudinal the axis of the shell has a positive effect on the stress state of the structure. The study also found that with an increase in the diameter of the winding wire from 1 to 2 mm and a change in the winding angle, the same nature of the stress distribution is observed, but the values of the stress state parameter change, so the efficiency increases up to 25% due to an increase in the winding thickness, depending on the pitch, angle and thickness of the winding, which favorably affects the strength and the bearing capacity of the structure as a whole by increasing the value of the stress state parameter. Thus, the results of the analysis will allow us to use in more detail the possibility of controlling the stress-strain state of the prestressed shell by changing the design parameters, and the results obtained can be used in design or construction, as well as when increasing the strength characteristics of the structure, which allows us to create a high-tech design optimal for these operating conditions, which can positively complement the studies conducted earlier in this direction.

5.
Materials (Basel) ; 15(11)2022 Jun 02.
Article in English | MEDLINE | ID: mdl-35683267

ABSTRACT

Copper-sheathed steel wires combine the conductivity of copper and the traction resistance of steel, which makes a bimetallic wire an ideal material for the construction of power lines. Currently, there is a small number of studies devoted to the change in the microstructure of steel-copper wire during its strain. Since steel and copper have different mechanical properties, these metals at the interface can be deformed in different ways. Therefore, the present research is devoted to the study of ECAP-drawing process impacts on the properties of bimetallic steel-copper wire. During the conducted studies, the possibility and efficiency of using the combined strain technology for the formation of ultrafine grained structure and increased strength properties of steel-copper wire have been proved.

6.
Materials (Basel) ; 15(7)2022 Mar 30.
Article in English | MEDLINE | ID: mdl-35407873

ABSTRACT

This paper presents studies on the possibility of utilization of technogenic waste from the metallurgical industry by the method of complex processing in order to reduce the anthropogenic load on the environment of the region with the example of the zinc silicate-magnetite-carbon system. The selected sample of clinker dump from welting was subjected to chemical and scanning electron microscopic analyses and thermodynamic modeling. Thermodynamic studies were carried out in the temperature range 1600-2200 K and pressure p = 0.1 MPa, modeling the process of electric melting of clinker from welting in an arc furnace using the software application Astra 4 developed at the Bauman Moscow State Technical University (Moscow, Russian Federation). As a result of the thermodynamic modeling, the optimal temperature range was established, which was 1800-1900 K. Thermodynamic studies established that it is possible to drive away zinc from the system under study by 99-100% in the entire temperature range under study. The maximum degree of silicon extraction (αSi) in the alloy is up to 69.44% at T = 1900 K, and the degree of iron extraction (αFe) in the alloy is up to 99.996%. In particular, it was determined and proved that clinker waste from welting can act as a secondary technogenic raw material when it is processed as a mono mixture to produce iron silicides with a silicon content of 18 to 28%.

7.
Materials (Basel) ; 15(7)2022 Mar 31.
Article in English | MEDLINE | ID: mdl-35407915

ABSTRACT

The paper studies the properties of brass workpieces for antifriction rings under severe plastic deformation by high-pressure torsion. The evolution of microstructure and mechanical properties of deformed workpieces after six cycles of deformation by high-pressure torsion at 500 °C have been studied. All metallographic studies were performed using modern methods: transmission electron microscopy (TEM) and analysis electron back scatter diffraction patterns (EBSD). The deformation resulted in an ultrafine grained structure with a large number of large-angle boundaries. The strength properties of brass increased compared to the initial state almost by three times, the microhardness also increases by three times, i.e., increased from 820 MPa in the initial state to 2115 MPa after deformation. In this case, the greatest increase in strength properties occurs in the first two cycles of deformation.

8.
Materials (Basel) ; 15(1)2022 Jan 03.
Article in English | MEDLINE | ID: mdl-35009470

ABSTRACT

This paper presents studies on the processing of enrichment tailings as a component of a raw mixture in order to obtain cement clinker, with simultaneous distillation of zinc. Thermodynamic studies were carried out in the temperature range of 600-1600 °C using the software application "HSC Chemistry 6" developed by the metallurgical company Outokumpu (Finland). As a result of the conducted studies, we found that zinc contributes to the intensification of mineral formation of cement clinker. In particular, it was found that the formation of belite is possible in the temperature range from 990.7 to 1500 °C with Gibbs energy values of -0.01 and -323.8 kJ (which is better than the standard process by -11.4 kJ), respectively; the formation of alite is possible in the temperature range from 982.9 to 1500 °C with Gibbs energy values of -0.05 and -402.1 kJ (better than the standard process by -11.4 kJ), respectively; the formation of tricalcium aluminate is thermodynamically possible in the temperature range from 600 °C at ΔGTo = -893.8 kJ to 1500 °C at ΔGTo = -1899.3 kJ (better than the standard process by -1570.1 kJ), respectively; and the formation of four calcium aluminoferrite is possible in the temperature range from 600 °C at ΔGTo = -898.9 kJ to 1500 °C at ΔGTo = -1959.3 kJ (better than the standard process by -1570.2 kJ), respectively, with simultaneous distillation of zinc into a gaseous state for its further capture.

SELECTION OF CITATIONS
SEARCH DETAIL
...