Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biochem Biophys Res Commun ; 691: 149333, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38043197

ABSTRACT

Aberrant calcium signaling is associated with a diverse range of pathologies, including cardiovascular and neurodegenerative diseases, diabetes, cancer, etc… So, therapeutic strategies based on the correction of pathological calcium signaling are becoming extremely in demand. Thus, the development of novel calcium signaling modulators remains highly actual. Previously we found that 1,2,3,4-dithiadiazole derivative 3-(4-nitrophenyl)-5-phenyl-3H-1,2,3,4-dithiadiazole-2-oxide can strongly reduce calcium uptake through store-operated calcium (SOC) channels. Here we tested several structurally related compounds and found that most of them can effectively affect SOC channels and attenuate calcium content in the endoplasmic reticulum, thus, establishing 1,2,3,4-dithiadiazoles as a novel class of SOC channel inhibitors. Comparing different 1,2,3,4-dithiadiazole derivatives we showed that previously published 3-(4-nitrophenyl)-5-phenyl-3H-1,2,3,4-dithiadiazole-2-oxide and newly tested 3-(3,5-difluorophenyl)-5-phenyl-3H-1,2,3,4-dithiadiazole 2-oxide demonstrated the highest efficacy of SOC entry reduction, supposing the important role of electron-withdrawing substituents to realize the inhibitory activity of 1,2,3,4-dithiadiazoles.


Subject(s)
Calcium Signaling , Calcium , Calcium/metabolism , Calcium Channels/metabolism , Oxides
2.
Int J Mol Sci ; 24(8)2023 Apr 14.
Article in English | MEDLINE | ID: mdl-37108424

ABSTRACT

Type 2 diabetes mellitus (DM2) is a widespread metabolic disorder that results in podocyte damage and diabetic nephropathy. Previous studies demonstrated that TRPC6 channels play a pivotal role in podocyte function and their dysregulation is associated with development of different kidney diseases including nephropathy. Here, using single channel patch clamp technique, we demonstrated that non-selective cationic TRPC6 channels are sensitive to the Ca2+ store depletion in human podocyte cell line Ab8/13 and in freshly isolated rat glomerular podocytes. Ca2+ imaging indicated the involvement of ORAI and sodium-calcium exchanger in Ca2+ entry induced upon store depletion. In male rats fed a high-fat diet combined with a low-dose streptozotocin injection, which leads to DM2 development, we observed the reduction of a store-operated Ca2+ entry (SOCE) in rat glomerular podocytes. This was accompanied by a reorganization of store-operated Ca2+ influx such that TRPC6 channels lost their sensitivity to Ca2+ store depletion and ORAI-mediated Ca2+ entry was suppressed in TRPC6-independent manner. Altogether our data provide new insights into the mechanism of SOCE organization in podocytes in the norm and in pathology, which should be taken into account when developing pharmacological treatment of the early stages of diabetic nephropathy.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Diabetic Nephropathies , Podocytes , Humans , Rats , Male , Animals , TRPC6 Cation Channel/metabolism , Podocytes/metabolism , Calcium Channels/metabolism , Diabetic Nephropathies/metabolism , Calcium/metabolism , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Experimental/metabolism , TRPC Cation Channels/metabolism
3.
Int J Mol Sci ; 22(9)2021 Apr 30.
Article in English | MEDLINE | ID: mdl-33946319

ABSTRACT

Microdomains formed by proteins of endoplasmic reticulum and plasma membrane play a key role in store-operated Ca2+ entry (SOCE). Ca2+ release through inositol 1,4,5-trisphosphate receptor (IP3R) and subsequent Ca2+ store depletion activate STIM (stromal interaction molecules) proteins, sensors of intraluminal Ca2+, which, in turn, open the Orai channels in plasma membrane. Downstream to this process could be activated TRPC (transient receptor potential-canonical) calcium permeable channels. Using single channel patch-clamp technique we found that a local Ca2+ entry through TRPC1 channels activated endogenous Ca2+-activated chloride channels (CaCCs) with properties similar to Anoctamin6 (TMEM16F). Our data suggest that their outward rectification is based on the dependence from membrane potential of both the channel conductance and the channel activity: (1) The conductance of active CaCCs highly depends on the transmembrane potential (from 3 pS at negative potentials till 60 pS at positive potentials); (2) their activity (NPo) is enhanced with increasing Ca2+ concentration and/or transmembrane potential, conversely lowering of intracellular Ca2+ concentration reduced the open state dwell time; (3) CaCC amplitude is only slightly increased by intracellular Ca2+ concentration. Experiments with Ca2+ buffering by EGTA or BAPTA suggest close local arrangement of functional CaCCs and TRPC1 channels. It is supposed that Ca2+-activated chloride channels are involved in Ca2+ entry microdomains.


Subject(s)
Anoctamins/metabolism , Calcium/metabolism , Chloride Channels/metabolism , Phospholipid Transfer Proteins/metabolism , TRPC Cation Channels/metabolism , Cations, Divalent/metabolism , HEK293 Cells , Humans , Patch-Clamp Techniques
SELECTION OF CITATIONS
SEARCH DETAIL
...