Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 14(22)2022 Nov 08.
Article in English | MEDLINE | ID: mdl-36432934

ABSTRACT

Polymer-based multiferroics, combining magnetic and piezoelectric properties, are studied experimentally-from synthesis to multi-parameter characterization-in view of their prospects for fabricating biocompatible scaffolds. The main advantage of these systems is facile generation of mechanical deformations and electric signals in response to external magnetic fields. Herein, we address the composites based on PVDF-TrFE polymer matrices filled with a combination of piezoelectric (BaTiO3, BTO) and/or ferrimagnetic (Zn0.25Co0.75Fe2O4, ZCFO) particles. It is shown that the presence of BTO micron-size particles favors stripe-type structuring of the ZCFO filler and enhances the magnetoelectric response of the sample up to 18.6 mV/(cm∙Oe). Besides that, the admixing of BTO particles is crucial because the mechanical properties of the composite filled with only ZCFO is much less efficient in transforming magnetic excitations into the mechanical and electric responses. Attention is focused on the local surfacial mechanical properties since those, to a great extent, determine the fate of stem cells cultivated on these surfaces. The nano-indentation tests are accomplished with the aid of scanning probe microscopy technique. With their proven suitable mechanical properties, a high level of magnetoelectric conversion and also biocompatibility, the composites of the considered type are enticing as the materials for multiferroic-based polymer scaffolds.

2.
Nanomaterials (Basel) ; 11(5)2021 Apr 28.
Article in English | MEDLINE | ID: mdl-33925105

ABSTRACT

Polymer-based magnetoelectric composite materials have attracted a lot of attention due to their high potential in various types of applications as magnetic field sensors, energy harvesting, and biomedical devices. Current researches are focused on the increase in the efficiency of magnetoelectric transformation. In this work, a new strategy of arrangement of clusters of magnetic nanoparticles by an external magnetic field in PVDF and PFVD-TrFE matrixes is proposed to increase the voltage coefficient (αME) of the magnetoelectric effect. Another strategy is the use of 3-component composites through the inclusion of piezoelectric BaTiO3 particles. Developed strategies allow us to increase the αME value from ~5 mV/cm·Oe for the composite of randomly distributed CoFe2O4 nanoparticles in PVDF matrix to ~18.5 mV/cm·Oe for a composite of magnetic particles in PVDF-TrFE matrix with 5%wt of piezoelectric particles. The applicability of such materials as bioactive surface is demonstrated on neural crest stem cell cultures.

3.
Nanomaterials (Basel) ; 11(2)2021 Jan 21.
Article in English | MEDLINE | ID: mdl-33494339

ABSTRACT

The tunable magnetic properties of amorphous ferromagnetic glass-coated microwires make them suitable for a wide range of applications. Accurate knowledge of the micromagnetic structure is highly desirable since it affects almost all magnetic properties. To select an appropriate wire-sample for a specific application, a deeper understanding of the magnetization reversal process is required, because it determines the measurable response (such as induced voltage waveform and its spectrum). However, the experimental observation of micromagnetic structure of micro-scale amorphous objects has strict size limitations. In this work we proposed a novel experimental technique for evaluating the microstructural characteristics of glass-coated microwires. The cross-sectional permeability distribution in the sample was obtained from impedance measurements at different frequencies. This distribution enables estimation of the prevailing anisotropy in the local region of the wire cross-section. The results obtained were compared with the findings of magnetostatic measurements and remanent state analysis. The advantages and limitations of the methods were discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...