Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Appl Opt ; 62(19): 5203-5223, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37707225

ABSTRACT

We analyze the solution space of 3ß+2α optical data inferred from lidar measurements, i.e., backscatter coefficients at three wavelengths and extinction coefficients at two wavelengths. These optical data are governed by microphysical parameters that can be expressed in terms of particle size distribution, effective radius, and complex refractive index (CRI). In our analysis, we consider two scenarios of the solution space. First, it can be expressed in terms of monomodal particle size distributions represented either by fine modes or by coarse modes. Secondly, the particle size distributions contain a fine mode as well as a coarse mode. Consideration of both scenarios and different values of the effective radius and CRI allows us to find synthetic 3ß+2α optical data and corresponding intensive parameters (IPs) such as lidar ratios, backscatter- and extinction-related Ångström exponents at the available measurement wavelengths. Based on interdependencies between synthetic IPs and various microphysical properties, the qualitative and quantitative criteria for the optical data quality-assurance tool are developed. We derive the conditions of smoothness, closeness, convergence, and stability of the solution space for the quantitative criteria to test the quality of the 3ß+2α optical data. Our novel methodology, to the best of our knowledge, can be used not only for particles of spherical shape, but also for cases in which particles are irregularly shaped. Another strength of our methodology is that it also works for the case of a size-dependent and wavelength-dependent CRI. We show the potential of this methodology for a measurement case from the ORACLES campaign. Data were taken with NASA Langley's airborne HSRL-2 instrument on September 24, 2016.

2.
Appl Opt ; 58(18): 4981-5008, 2019 Jun 20.
Article in English | MEDLINE | ID: mdl-31503821

ABSTRACT

We evaluate the retrieval performance of the automated, unsupervised inversion algorithm, Tikhonov Advanced Regularization Algorithm (TiARA), which is used for the autonomous retrieval of microphysical parameters of anthropogenic and natural pollution particles. TiARA (version 1.0) has been developed in the past 10 years and builds on the legacy of a data-operator-controlled inversion algorithm used since 1998 for the analysis of data from multiwavelength Raman lidar. The development of TiARA has been driven by the need to analyze in (near) real time large volumes of data collected with NASA Langley Research Center's high-spectral-resolution lidar (HSRL-2). HSRL-2 was envisioned as part of the NASA Aerosols-Clouds-Ecosystems mission in response to the National Academy of Sciences (NAS) Decadal Study mission recommendations 2007. TiARA could thus also serve as an inversion algorithm in the context of a future space-borne lidar. We summarize key properties of TiARA on the basis of simulations with monomodal logarithmic-normal particle size distributions that cover particle radii from approximately 0.05 µm to 10 µm. The real and imaginary parts of the complex refractive index cover the range from non-absorbing to highly light-absorbing pollutants. Our simulations include up to 25% measurement uncertainty. The goal of our study is to provide guidance with respect to technical features of future space-borne lidars, if such lidars will be used for retrievals of microphysical data products, absorption coefficients, and single-scattering albedo. We investigate the impact of two different measurement-error models on the quality of the data products. We also obtain for the first time, to the best of our knowledge, a statistical view on systematic and statistical uncertainties, if a large volume of data is processed. Effective radius is retrieved to 50% accuracy for 58% of cases with an imaginary part up to 0.01i and up to 100% of cases with an imaginary part of 0.05i. Similarly, volume concentration, surface-area concentration, and number concentrations are retrieved to 50% accuracy in 56%-100% of cases, 99%-100% of cases, and 54%-87% of cases, respectively, depending on the imaginary part. The numbers represent measurement uncertainties of up to 15%. If we target 20% retrieval accuracy, the numbers of cases that fall within that threshold are 36%-76% for effective radius, 36%-73% for volume concentration, 98%-100% for surface-area concentration, and 37%-61% for number concentration. That range of numbers again represents a spread in results for different values of the imaginary part. At present, we obtain an accuracy of (on average) 0.1 for the real part. A case study from the ORCALES field campaign is used to illustrate data products obtained with TiARA.

3.
Appl Opt ; 57(10): 2499-2513, 2018 Apr 01.
Article in English | MEDLINE | ID: mdl-29714234

ABSTRACT

We conclude our series of publications on the development of the gradient correlation method (GCM), which can be used for an improved stabilization of the solution space of particle microphysical parameters derived from measurements with multiwavelength Raman and high-spectral-resolution lidar (3 backscatter +2 extinction coefficients). We show results of three cases studies. The data were taken with a ground-based multiwavelength Raman lidar during the Saharan Mineral Dust Experiment in the Cape Verde Islands (North Atlantic). These cases describe mixtures of dust with smoke. For our data analysis we separated the contribution of smoke to the total signal and only used these optical profiles for the test of GCM. The results show a significant stabilization of the solution space of the particle microphysical parameter retrieval on the particle radius domain from 0.03 to 10 µm, the real part of the complex refractive index domain from 1.3 to 1.8, and the imaginary part from 0 to 0.1. This new method will be included in the Tikhonov Advanced Regularization Algorithm, which is a fully automated, unsupervised algorithm that is used for the analysis of data collected with the worldwide first airborne 3 backscatter +2 extinction high-spectral-resolution lidar developed by NASA Langley Research Center.

4.
Atmos Meas Tech ; 11(2): 949-969, 2018 Mar 02.
Article in English | MEDLINE | ID: mdl-32699562

ABSTRACT

Observations of multiwavelength Mie-Raman lidar taken during the SHADOW field campaign are used to analyze a smoke-dust episode over West Africa on 24-27 December 2015. For the case considered, the dust layer extended from the ground up to approximately 2000 m while the elevated smoke layer occurred in the 2500-4000 m range. The profiles of lidar measured backscattering, extinction coefficients, and depolarization ratios are compared with the vertical distribution of aerosol parameters provided by the Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). The MERRA-2 model simulated the correct location of the near-surface dust and elevated smoke layers. The values of modeled and observed aerosol extinction coefficients at both 355 and 532 nm are also rather close. In particular, for the episode reported, the mean value of difference between the measured and modeled extinction coefficients at 355 nm is 0.01 km-1 with SD of 0.042 km-1. The model predicts significant concentration of dust particles inside the elevated smoke layer, which is supported by an increased depolarization ratio of 15 % observed in the center of this layer. The modeled at 355 nm the lidar ratio of 65 sr in the near-surface dust layer is close to the observed value (70 ± 10) sr. At 532 nm, however, the simulated lidar ratio (about 40 sr) is lower than measurements (55 ± 8 sr). The results presented demonstrate that the lidar and model data are complimentary and the synergy of observations and models is a key to improve the aerosols characterization.

5.
Appl Opt ; 55(34): 9839-9849, 2016 Dec 01.
Article in English | MEDLINE | ID: mdl-27958480

ABSTRACT

Multiwavelength Raman/high spectral resolution lidars that measure backscatter coefficients at 355, 532, and 1064 nm and extinction coefficients at 355 and 532 nm can be used for the retrieval of particle microphysical parameters, such as effective and mean radius, number, surface-area and volume concentrations, and complex refractive index, from inversion algorithms. In this study, we carry out a correlation analysis in order to investigate the degree of dependence that may exist between the optical data taken with lidar and the underlying microphysical parameters. We also investigate if the correlation properties identified in our study can be used as a priori or a posteriori constraints for our inversion scheme so that the inversion results can be improved. We made the simplifying assumption of error-free optical data in order to find out what correlations exist in the best case situation. Clearly, for practical applications, erroneous data need to be considered too. On the basis of simulations with synthetic optical data, we find the following results, which hold true for arbitrary particle size distributions, i.e., regardless of the modality or the shape of the size distribution function: surface-area concentrations and extinction coefficients are linearly correlated with a correlation coefficient above 0.99. We also find a correlation coefficient above 0.99 for the extinction coefficient versus (1) the ratio of the volume concentration to effective radius and (2) the product of the number concentration times the sum of the squares of the mean radius and standard deviation of the investigated particle size distributions. Besides that, we find that for particles of any mode fraction of the particle size distribution, the complex refractive index is uniquely defined by extinction- and backscatter-related Ångström exponents, lidar ratios at two wavelengths, and an effective radius.

6.
Appl Opt ; 55(34): 9850-9865, 2016 Dec 01.
Article in English | MEDLINE | ID: mdl-27958481

ABSTRACT

We developed a mathematical scheme that allows us to improve retrieval products obtained from the inversion of multiwavelength Raman/HSRL lidar data, commonly dubbed "3 backscatter+2 extinction" (3ß+2α) lidar. This scheme works independently of the automated inversion method that is currently being developed in the framework of the Aerosol-Cloud-Ecosystem (ACE) mission and which is successfully applied since 2012 [Atmos. Meas. Tech.7, 3487 (2014)10.5194/amt-7-3487-2014; "Comparison of aerosol optical and microphysical retrievals from HSRL-2 and in-situ measurements during DISCOVER-AQ 2013 (California and Texas)," in International Laser Radar Conference, July 2015, paper PS-C1-14] to data collected with the first airborne multiwavelength 3ß+2α high spectral resolution lidar (HSRL) developed at NASA Langley Research Center. The mathematical scheme uses gradient correlation relationships we presented in part 1 of our study [Appl. Opt.55, 9839 (2016)APOPAI0003-693510.1364/AO.55.009839] in which we investigated lidar data products and particle microphysical parameters from one and the same set of optical lidar profiles. For an accurate assessment of regression coefficients that are used in the correlation relationships we specially designed the proximate analysis method that allows us to search for a first-estimate solution space of particle microphysical parameters on the basis of a look-up table. The scheme works for any shape of particle size distribution. Simulation studies demonstrate a significant stabilization of the various solution spaces of the investigated aerosol microphysical data products if we apply this gradient correlation method in our traditional regularization technique. Surface-area concentration can be estimated with an uncertainty that is not worse than the measurement error of the underlying extinction coefficients. The retrieval uncertainty of the effective radius is as large as ±0.07 µm for fine mode particles and approximately 100% for particle size distributions composed of fine (submicron) and coarse (supermicron) mode particles. The volume concentration uncertainty is defined by the sum of the uncertainty of surface-area concentration and the uncertainty of the effective radius. The uncertainty of number concentration is better than 100% for any radius domain between 0.03 and 10 µm. For monomodal PSDs, the uncertainties of the real and imaginary parts of the CRI can be restricted to ±0.1 and ±0.01 on the domains [1.3; 1.8] and [0; 0.1], respectively.

7.
Appl Opt ; 55(9): 2188-202, 2016 03 20.
Article in English | MEDLINE | ID: mdl-27140552

ABSTRACT

We present an investigation of some important mathematical and numerical features related to the retrieval of microphysical parameters [complex refractive index, single-scattering albedo, effective radius, total number, surface area, and volume concentrations] of ambient aerosol particles using multiwavelength Raman or high-spectral-resolution lidar. Using simple examples, we prove the non-uniqueness of an inverse solution to be the major source of the retrieval difficulties. Some theoretically possible ways of partially compensating for these difficulties are offered. For instance, an increase in the variety of input data via combination of lidar and certain passive remote sensing instruments will be helpful to reduce the error of estimation of the complex refractive index. We also demonstrate a significant interference between Aitken and accumulation aerosol modes in our inversion algorithm, and confirm that the solutions can be better constrained by limiting the particle radii. Applying a combination of an analytical approach and numerical simulations, we explain the statistical behavior of the microphysical size parameters. We reveal and clarify why the total surface area concentration is consistent even in the presence of non-unique solution sets and is on average the most stable parameter to be estimated, as long as at least one extinction optical coefficient is employed. We find that for selected particle size distributions, the total surface area and volume concentrations can be quickly retrieved with fair precision using only single extinction coefficients in a simple arithmetical relationship.

8.
Appl Opt ; 53(31): 7252-66, 2014 Nov 01.
Article in English | MEDLINE | ID: mdl-25402885

ABSTRACT

We present the results of a feasibility study in which a simple, automated, and unsupervised algorithm, which we call the arrange and average algorithm, is used to infer microphysical parameters (complex refractive index, effective radius, total number, surface area, and volume concentrations) of atmospheric aerosol particles. The algorithm uses backscatter coefficients at 355, 532, and 1064 nm and extinction coefficients at 355 and 532 nm as input information. Testing of the algorithm is based on synthetic optical data that are computed from prescribed monomodal particle size distributions and complex refractive indices that describe spherical, primarily fine mode pollution particles. We tested the performance of the algorithm for the "3 backscatter (ß)+2 extinction (α)" configuration of a multiwavelength aerosol high-spectral-resolution lidar (HSRL) or Raman lidar. We investigated the degree to which the microphysical results retrieved by this algorithm depends on the number of input backscatter and extinction coefficients. For example, we tested "3ß+1α," "2ß+1α," and "3ß" lidar configurations. This arrange and average algorithm can be used in two ways. First, it can be applied for quick data processing of experimental data acquired with lidar. Fast automated retrievals of microphysical particle properties are needed in view of the enormous amount of data that can be acquired by the NASA Langley Research Center's airborne "3ß+2α" High-Spectral-Resolution Lidar (HSRL-2). It would prove useful for the growing number of ground-based multiwavelength lidar networks, and it would provide an option for analyzing the vast amount of optical data acquired with a future spaceborne multiwavelength lidar. The second potential application is to improve the microphysical particle characterization with our existing inversion algorithm that uses Tikhonov's inversion with regularization. This advanced algorithm has recently undergone development to allow automated and unsupervised processing; the arrange and average algorithm can be used as a preclassifier to further improve its speed and precision. First tests of the performance of arrange and average algorithm are encouraging. We used a set of 48 different monomodal particle size distributions, 4 real parts and 15 imaginary parts of the complex refractive index. All in all we tested 2880 different optical data sets for 0%, 10%, and 20% Gaussian measurement noise (one-standard deviation). In the case of the "3ß+2α" configuration with 10% measurement noise, we retrieve the particle effective radius to within 27% for 1964 (68.2%) of the test optical data sets. The number concentration is obtained to 76%, the surface area concentration to 16%, and the volume concentration to 30% precision. The "3ß" configuration performs significantly poorer. The performance of the "3ß+1α" and "2ß+1α" configurations is intermediate between the "3ß+2α" and the "3ß."

9.
Appl Opt ; 52(14): 3178-202, 2013 May 10.
Article in English | MEDLINE | ID: mdl-23669830

ABSTRACT

We present for the first time vertical profiles of microphysical properties of pure mineral dust (largely unaffected by any other aerosol types) on the basis of the inversion of optical data collected with multiwavelength polarization Raman lidar. The data were taken during the Saharan Mineral Dust Experiment (SAMUM) in Morocco in 2006. We also investigated two cases of mixed dust-smoke plumes on the basis of data collected during the second SAMUM field campaign that took place in the Republic of Cape Verde in 2008. Following the experience of the Aerosol Robotic Network (AERONET), the dust is modeled as a mixture of spherical particles and randomly oriented spheroids. The retrieval is performed from the full set of lidar input data (three backscatter coefficients, two extinction coefficients, and one depolarization ratio) and from a reduced set of data in which we exclude the depolarization ratio. We find differences of the microphysical properties depending on what kind of optical data combination we use. For the case of pure mineral dust, the results from these two sets of optical data are consistent and confirm the validity of the spheroid particle model for data inversion. Our results indicate that in the case of pure mineral dust we do not need depolarization information in the inversion. For the mixture of dust and biomass burning, there seem to be more limitations in the retrieval accuracy of the various data products. The evaluation of the quality of our data products is done by comparing our lidar-derived data products (vertically resolved) to results from AERONET Sun photometer observations (column-averaged) carried out at the lidar field site. Our results for dust effective radius show agreement with the AERONET observations within the retrieval uncertainties. Regarding the complex refractive index a comparison is difficult, as AERONET provides this parameter as wavelength-dependent quantity. In contrast, our inversion algorithm provides this parameter as a wavelength-independent quantity. We also show some comparison to results from airborne in situobservation. A detailed comparison to in situ results will be left for a future contribution.

10.
Appl Opt ; 50(14): 2069-79, 2011 May 10.
Article in English | MEDLINE | ID: mdl-21556108

ABSTRACT

Inversion with two-dimensional (2-D) regularization is a new methodology that can be used for the retrieval of profiles of microphysical properties, e.g., effective radius and complex refractive index of atmospheric particles from complete (or sections) of profiles of optical particle properties. The optical profiles are acquired with multiwavelength Raman lidar. Previous simulations with synthetic data have shown advantages in terms of retrieval accuracy compared to our so-called classical one-dimensional (1-D) regularization, which is a method mostly used in the European Aerosol Research Lidar Network (EARLINET). The 1-D regularization suffers from flaws such as retrieval accuracy, speed, and ability for error analysis. In this contribution, we test for the first time the performance of the new 2-D regularization algorithm on the basis of experimental data. We measured with lidar an aged biomass-burning plume over West/Central Europe. For comparison, we use particle in situ data taken in the smoke plume during research aircraft flights upwind of the lidar. We find good agreement for effective radius and volume, surface-area, and number concentrations. The retrieved complex refractive index on average is lower than what we find from the in situ observations. Accordingly, the single-scattering albedo that we obtain from the inversion is higher than what we obtain from the aircraft data. In view of the difficult measurement situation, i.e., the large spatial and temporal distances between aircraft and lidar measurements, this test of our new inversion methodology is satisfactory.

11.
Appl Opt ; 47(25): 4472-90, 2008 Sep 01.
Article in English | MEDLINE | ID: mdl-18758517

ABSTRACT

We present the theory of inversion with two-dimensional regularization. We use this novel method to retrieve profiles of microphysical properties of atmospheric particles from profiles of optical properties acquired with multiwavelength Raman lidar. This technique is the first attempt to the best of our knowledge, toward an operational inversion algorithm, which is strongly needed in view of multiwavelength Raman lidar networks. The new algorithm has several advantages over the inversion with so-called classical one-dimensional regularization. Extensive data postprocessing procedures, which are needed to obtain a sensible physical solution space with the classical approach, are reduced. Data analysis, which strongly depends on the experience of the operator, is put on a more objective basis. Thus, we strongly increase unsupervised data analysis. First results from simulation studies show that the new methodology in many cases outperforms our old methodology regarding accuracy of retrieved particle effective radius, and number, surface-area, and volume concentration. The real and the imaginary parts of the complex refractive index can be estimated with at least as equal accuracy as with our old method of inversion with one-dimensional regularization. However, our results on retrieval accuracy still have to be verified in a much larger simulation study.

12.
Appl Opt ; 44(25): 5292-303, 2005 Sep 01.
Article in English | MEDLINE | ID: mdl-16149352

ABSTRACT

The multiwavelength Raman lidar technique in combination with sophisticated inversion algorithms has been recognized as a new tool for deriving information about the microphysical properties of atmospheric aerosols. The input optical parameter sets, provided by respective aerosol Raman lidars, are at the theoretical lower limit at which these inversion algorithms work properly. For that reason there is ongoing intense discussion of the accuracy of these inversion methods and the possibility of simultaneous retrieval of the particle size distribution and the complex refractive index. We present results of the eigenvalue analysis, used to study the information content of multiwavelength lidar data with respect to microphysical particle properties. Such an analysis provides, on a rather mathematical basis, more insight into the limitations of these inversion algorithms regarding the accuracy of the retrieved parameters. We show that the effective radius may be retrieved to 50% accuracy and the real and imaginary part of the complex refractive index to +/- 0.05 and +/- 0.005i, if the imaginary part is < 0.02i. These results are in accordance with the classic approach of simulation studies with synthetic particle size distributions. Major difficulties are found with a particle effective radius of < 0.15 microm. In that case the complex refractive index may not be derived with sufficient accuracy. The eigenvalue analysis also shows that the accuracy of the derived parameters degrades if the imaginary part is > 0.02i. Furthermore it shows the importance of the simultaneous use of backscatter and extinction coefficients for the retrieval of microphysical parameters.

13.
Appl Opt ; 43(5): 1180-95, 2004 Feb 10.
Article in English | MEDLINE | ID: mdl-15008501

ABSTRACT

We report on the feasibility of deriving microphysical parameters of bimodal particle size distributions from Mie-Raman lidar based on a triple Nd:YAG laser. Such an instrument provides backscatter coefficients at 355, 532, and 1064 nm and extinction coefficients at 355 and 532 nm. The inversion method employed is Tikhonov's inversion with regularization. Special attention has been paid to extend the particle size range for which this inversion scheme works to approximately 10 microm, which makes this algorithm applicable to large particles, e.g., investigations concerning the hygroscopic growth of aerosols. Simulations showed that surface area, volume concentration, and effective radius are derived to an accuracy of approximately 50% for a variety of bimodal particle size distributions. For particle size distributions with an effective radius of < 1 microm the real part of the complex refractive index was retrieved to an accuracy of +/- 0.05, the imaginary part was retrieved to 50% uncertainty. Simulations dealing with a mode-dependent complex refractive index showed that an average complex refractive index is derived that lies between the values for the two individual modes. Thus it becomes possible to investigate external mixtures of particle size distributions, which, for example, might be present along continental rims along which anthropogenic pollution mixes with marine aerosols. Measurement cases obtained from the Institute for Tropospheric Research six-wavelength aerosol lidar observations during the Indian Ocean Experiment were used to test the capabilities of the algorithm for experimental data sets. A benchmark test was attempted for the case representing anthropogenic aerosols between a broken cloud deck. A strong contribution of particle volume in the coarse mode of the particle size distribution was found.

14.
Appl Opt ; 41(27): 5773-82, 2002 Sep 20.
Article in English | MEDLINE | ID: mdl-12269576

ABSTRACT

A dipole model is used to simulate incoherent Raman and fluorescent scattering by microspheres. The use of the addition theorem for spherical harmonics circumvents the need to evaluate double sums in the final formulas, thereby drastically reducing computational effort. Special attention is paid to consideration of backscattering geometry, which is important for lidar applications. The formulas derived for backscattering geometry decrease the computation time for size parameter x approdximately 100 by a factor of 200 compared with the time for calculations performed at other angles.

15.
Appl Opt ; 41(27): 5783-91, 2002 Sep 20.
Article in English | MEDLINE | ID: mdl-12269577

ABSTRACT

The results of numerical simulation of inelastic scattering by microspheres with the use of a dipole model are presented. The formulas that are derived speed up the computation, thereby permitting larger-sized microspheres to be studied. The angular scattering cross section and depolarization are calculated for a wide range of size parameters as well as for different orientations of incident wave polarization. Calculations performed with small incremental changes in size permit the influence of morphology-dependent resonance (MDR) on the power and angular distribution of scattered radiation to be studied. TM and TE types of MDR produce enhanced scattering of the incident wave with vertical and horizontal polarization; the corresponding shape of the phase function becomes oscillatory. Special attention is paid to the simulation of backward scattering by water droplets, which is important for Raman lidar applications.

16.
Appl Opt ; 41(18): 3685-99, 2002 Jun 20.
Article in English | MEDLINE | ID: mdl-12078696

ABSTRACT

We present an inversion algorithm for the retrieval of particle size distribution parameters, i.e., mean (effective) radius, number, surface area, and volume concentration, and complex refractive index from multiwavelength lidar data. In contrast to the classical Tikhonov method, which accepts only that solution for which the discrepancy reaches its global minimum, in our algorithm we perform the averaging of solutions in the vicinity of this minimum. This averaging stabilizes the underlying ill-posed inverse problem, particularly with respect to the retrieval of number concentration. Results show that, for typical tropospheric particles and 10% error in the optical data, the mean radius could be retrieved to better than 20% from a lidar on the basis of a Nd:YAG laser, which provides a combination of backscatter coefficients at 355, 532, and 1064 nm and extinction coefficients at 355 and 532 nm. The accuracy is improved if the lidar is also equipped with a hydrogen Raman shifter. In this case two additional backscatter coefficients at 416 and 683 nm are available. The combination of two extinction coefficients and five backscatter coefficients then allows one to retrieve not only averaged aerosol parameters but also the size distribution function. There was acceptable agreement between physical particle properties obtained from the evaluation of multiwavelength lidar data taken during the Lindenberg Aerosol Characterization Experiment in 1998 (LACE 98) and in situ data, which were taken aboard aircraft.

SELECTION OF CITATIONS
SEARCH DETAIL
...