Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 40(26): 13657-13668, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38875497

ABSTRACT

Diminishing the charge recombination rate by improving the photoelectrochemical (PEC) performance of graphitic carbon nitride (g-C3N4) is essential for better water oxidation. In this concern, this research explores the competent approach to enhance the PEC performance of g-C3N4 nanosheets (NSs), creating their nanocomposites (NCs) with metal-organic framework (MOF)-derived porous CeO2 nanobars (NBs) along with ZnO nanorods (NRs) and TiO2 nanoparticles (NPs). The synthesis involved preparing CeO2 NBs and g-C3N4 NSs through the calcination of respective precursors, while the sol-gel method is employed for ZnO NRs and TiO2 NPs. Following the subsequent analysis of the physicochemical properties of the materials, the binder-free brush-coating method is deployed to fabricate NC-based photoanodes, followed by an evaluation of the PEC performance through various electrochemical techniques. Remarkably, the binary g-C3N4/CeO2 NCs with 20 wt % CeO2 NBs (gC20 NCs) exhibited a significantly enhanced current density of 0.460 mA/cm2 at 1.23 V vs reversible hydrogen electrode, which is 2.3 times greater than that of bare g-C3N4 NSs (0.195 mA/cm2). Further improvements are observed with ternary gC20/TiO2 (gCT50) and gC20/ZnO (gCZ50) NCs, achieving current densities of 1.810 and 1.440 mA/cm2, respectively. These enhanced current densities are attributed to increased donor densities, reduced charge transfer resistances, and efficient charge transport within the NCs. In addition, higher surface areas with beneficial instinctive defects are perceived for gCT50 and gCZ50 NCs, as revealed by Brunauer-Emmett-Teller and electron spin resonance analysis. Finally, the stability of gCZ50 and gCT50 NC-based photoanodes is predicted and forecasted with the help of the recurrent neural network-based long short-term memory technique. Overall, this study demonstrates the efficacy of organic-inorganic hybrids for efficient photoanodes, facilitating advancements in water-splitting studies.

2.
Nanomaterials (Basel) ; 13(2)2023 Jan 09.
Article in English | MEDLINE | ID: mdl-36678029

ABSTRACT

In this study, Fe-doped graphitic carbon nitride (Fe-MCNC) with varying Fe contents was synthesized via a supramolecular approach, followed by thermal exfoliation, and was then used for accelerated photocatalytic hydrogen evolution and nitrogen fixation. Various techniques were used to study the physicochemical properties of the MCN (g-C3N4 from melamine) and Fe-MCNC (MCN for g-C3N4 and C for cyanuric acid) catalysts. The field emission scanning electron microscopy (FE-SEM) images clearly demonstrate that the morphology of Fe-MCNC changes from planar sheets to porous, partially twisted (partially developed nanotube and nanorod) nanostructures. The elemental mapping study confirms the uniform distribution of Fe on the MCNC surface. The X-ray photoelectron spectroscopy (XPS) and UV-visible diffuse reflectance spectroscopy (UV-DRS) results suggest that the Fe species might exist in the Fe3+ state and form Fe-N bonds with N atoms, thereby extending the visible light absorption areas and decreasing the band gap of MCN. Furthermore, doping with precise amounts of Fe might induce exfoliation and increase the specific surface area, but excessive Fe could destroy the MCN structure. The optimized Fe-MCNC nanostructure had a specific surface area of 23.6 m2 g-1, which was 8.1 times greater than that of MCN (2.89 m2 g-1). To study its photocatalytic properties, the nanostructure was tested for photocatalytic hydrogen evolution and nitrogen fixation; 2Fe-MCNC shows the highest photocatalytic activity, which is approximately 13.3 times and 2.4 times better, respectively, than MCN-1H. Due to its high efficiency and stability, the Fe-MCNC nanostructure is a promising and ideal photocatalyst for a wide range of applications.

3.
Nanoscale ; 12(47): 24119-24137, 2020 Dec 21.
Article in English | MEDLINE | ID: mdl-33242052

ABSTRACT

We report the grain growth from the nanoscale to microscale and a transformation sequence from Bi →ß-Bi2O3→γ-Bi2O3→α-Bi2O3 with the increase of annealing temperature. The room temperature (RT) stabilization of ß-Bi2O3 nanoparticles (NPs) was attributed to the effect of reduced surface energy due to adsorbed carbon species, and oxygen vacancy defects may have played a significant role in the RT stabilization of γ-Bi2O3 NPs. An enhanced red emission band was evident from all the samples attributed to oxygen-vacancy defects formed during the growth process in contrast with the observed white emission band from the air annealed Bi ingots. Based on our experimental findings, the air annealing induced oxidation of Bi NPs and transformation mechanism within various Bi2O3 nano-polymorphs are presented. The outcome of this study suggests that oxygen vacancy defects at the nanoscale play a significant role in both structural stabilization and phase transformation within various Bi2O3 nano-polymorphs, which is significant from theoretical consideration.

4.
Photochem Photobiol ; 94(6): 1249-1262, 2018 11.
Article in English | MEDLINE | ID: mdl-30025150

ABSTRACT

Supported silver nanoparticles (Ag NPs) were prepared by chemical reduction method with a sol-gel method. The structure, morphology, and interconnectivity of Ag/TiO2 nanocomposites (NCs) were analyzed using different instrumental techniques. Transmission electron microscopy reveals the Ag NPs have uniformly distributed and anchored on the surface of TiO2 . The reduction in electron-hole recombination was measured by Photoluminescence measurements lead, to an increased photocatalytic inactivation of bacteria. Increase in the amount of Ag NPs on TiO2 resulted in a slight decrease in optical band gap energy of TiO2 . The effect of Ag NPs content on the photocatalytic properties of TiO2 for inhibition of bacteria in visible light irradiation was studied. Furthermore, the antibacterial activity of Ag/TiO2 NCs in the presence of UVA light was studied against gram-positive Staphylococcus aureus and gram-negative Escherichia coli bacterial strain by plate count method. Lower values of minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of the catalysts were observed and used to determine the tolerance factor which is shown bactericidal nature of the NCs. Subsequently, time-killing assay of Ag/TiO2 NCs was shown dynamics of antimicrobial activity. These multifold antibacterial studies exhibited potent antibacterial nature of the NCs and employed in the wider range of biomedical fields.

5.
J Mater Sci Mater Med ; 27(12): 177, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27752971

ABSTRACT

In this study, nanocomposites of Fe-doped TiO2 with multi-walled carbon nanotubes (0.1- 0.5 wt. %) were prepared by using sol-gel method. The structural and morphological analysis were carried out with using X-ray diffraction pattern and transmission electron microscopy, which confirm the presence of pure anatase phase and particle sizes in the range 15-20 nm. X-ray photoelectron spectroscopy was used to determine the surface compositions of the nanocomposites. UV-vis diffuse reflectance spectra confirm redshift in the optical absorption edge of nanocomposites with increasing amount of multi-walled carbon nanotubes. Nanocomposites show photoinactivation against gram-positive Bacillus subtilis as well as gram-negative Pseudomonas aeruginosa. Fe-TiO2-multi-walled carbon nanotubes (0.5 wt. %) nanocomposites show higher photoinactivation capability as compared with other nanocomposites. The photoluminescence study reveals that the Fe-TiO2-multi-walled carbon nanotubes nanocomposites are capable to generate higher rate of reactive oxygen species species than that of other nanocomposites. Our experimental results demonstrated that the Fe-TiO2-multi-walled carbon nanotubes nanocomposites act as efficient antibacterial agents against a wide range of microorganisms to prevent and control the persistence and spreading of bacterial infections.


Subject(s)
Iron/chemistry , Photochemical Processes , Titanium/chemistry , Bacillus subtilis , Bacteria/drug effects , Bacterial Infections/drug therapy , Carbon/chemistry , Catalysis , Humans , Light , Microscopy, Electron, Transmission , Nanocomposites , Nanotubes, Carbon/chemistry , Particle Size , Phase Transition , Photoelectron Spectroscopy , Pseudomonas aeruginosa , Reactive Oxygen Species/chemistry , Surface Properties , Ultraviolet Rays , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...