Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 753: 141881, 2021 Jan 20.
Article in English | MEDLINE | ID: mdl-32896734

ABSTRACT

The development of novel, non-sewered sanitation systems like the Nano Membrane Toilet requires thorough investigation of processes that may seem well-understood. For example, unlike the settling of primary sludge, the separation of solids from liquids in a small-volume container at the scale of a household toilet has not been studied before. In two sets of experiments, the settling of real faeces and toilet paper in settling columns and the settling of synthetic faeces in a conical tank are investigated to understand the factors affecting the liquid quality for downstream treatment processes. Toilet paper is found to be a major inhibitor to settling of solids. While a lower overflow point results in better phase separation through displacement of liquid, a higher overflow point and frequent removal of solids may be more advantageous for the liquid quality.


Subject(s)
Sanitation , Waste Disposal, Fluid , Feces , Sewage
2.
Gates Open Res ; 4: 67, 2020.
Article in English | MEDLINE | ID: mdl-34056550

ABSTRACT

Background: Drying is an important step for the thermochemical conversion of solid fuels, but it is energy-intensive for treating highly moist materials. Methods: To inform the thermal treatment of faecal sludge (FS), this study investigated the drying characteristics and kinetics of various faecal wastes using thermogravimetric analysis and isothermal heating conditions. Results: The findings show that FS from anaerobic baffled reactor (ABR) and ventilated improved pit (VIP) latrines exhibit similar drying characteristics, with maximum drying rates at 0.04 mg/min during a constant rate period that is followed by a distinct falling rate period. On the contrary, fresh human faeces (HF) and FS from urine-diverting dry toilets (UDDT) exhibited a falling rate period regime with no prior or intermittent constant rate periods. The absence of constant rate period in these samples suggested limited amounts of unbound water that can be removed by dewatering and vice versa for VIP and ABR faecal sludges. The activation energies and effective moisture diffusivity for the sludges varied from 20 to 30 kJ/mol and 3∙10 -7 to 1∙10 -5 m 2/s at 55°C and sludge thickness of 3mm. The Page model was consistent in modelling the different sludges across all temperatures. Conclusions: These results presented in this study can inform the design and development of innovative drying methods for FS treatment.

3.
Sci Total Environ ; 668: 419-431, 2019 Jun 10.
Article in English | MEDLINE | ID: mdl-30852218

ABSTRACT

A prototype of a non-fluid based mechanical toilet flush was tested in a semi-public, institutional setting and in selected peri-urban households in eThekwini municipality, Republic of South Africa. The mechanism's functionality and users' perception of the flush were assessed. User perception varied depending on background: Users accustomed to porcelain water flush toilets were open to, yet reserved about the idea of using a waterless flush in their homes. Those who commonly use Urine Diversion Dehydration Toilets were far more receptive. The user-centred field trials were complemented by a controlled laboratory experiment, using synthetic urine, -faeces, and -menstrual blood, to systematically assess the efficiency of three swipe materials to clean the rotating bowl of the flush. A silicone rubber with oil-bleed-effect was found to be the best performing material for the swipe. Lubrication of the bowl prior to use further reduced fouling. A mechanical waterless flush that does not require consumables, like plastic wrappers, is a novelty and could - implemented in existing dry toilet systems - improve acceptance and thus the success of waterless sanitation.

4.
Gates Open Res ; 3: 1532, 2019.
Article in English | MEDLINE | ID: mdl-32025631

ABSTRACT

Urban sanitation in growing cities of the Global South presents particular challenges. This led to the Bill & Melinda Gates Foundation's Reinvent The Toilet Challenge, which sparked the development of various non-sewered sanitation technologies like the Nano Membrane Toilet. Complex disruptive technologies like this entail an extensive product development process, including various types of prototype tests. While there is an abundance of literature discussing how to build prototypes, and the optimal number of tests, there has been little focus on how to plan and conduct tests, especially in a development endeavour of this complexity. Four approaches to testing are reviewed, and their strengths and weaknesses compared. A visualised testing strategy is proposed that encompasses the entire product development process and can be used to plan and communicate prototype tests for the Nano Membrane Toilet to ultimately achieve compliance with international standards.

5.
Energy Convers Manag ; 165: 528-540, 2018 Jun 01.
Article in English | MEDLINE | ID: mdl-29861520

ABSTRACT

The demand for better hygiene has increased the need for developing more effective sanitation systems and facilities for the safe disposal of human urine and faeces. Non-Sewered Sanitary systems are considered to be one of the promising alternative solutions to the existing flush toilet system. An example of these systems is the Nano Membrane Toilet (NMT) system being developed at Cranfield University, which targets the safe disposal of human waste while generating power and recovering water. The NMT will generate energy from the conversion of human waste with the use of a micro-combustor; the heat produced will power a Stirling engine connected to a linear alternator to generate electricity. This study presents a numerical investigation of the thermodynamic analysis and operational characteristics of a quasi steady state model of the gamma type Stirling engine integrated into a combustor in the back end of the NMT system. The effects of the working gas, at different temperatures, on the Stirling engine performance are also presented. The results show that with the heater temperature of 390 °C from the heat supply via conduction at 820 W from the flue gas, the Stirling engine generates a daily power output of 27 Wh/h at a frequency of 23.85 Hz.

6.
Energy Convers Manag ; 163: 74-85, 2018 May 01.
Article in English | MEDLINE | ID: mdl-29725147

ABSTRACT

A probabilistic modelling approach was developed and applied to investigate the energy and environmental performance of an innovative sanitation system, the "Nano-membrane Toilet" (NMT). The system treats human excreta via an advanced energy and water recovery island with the aim of addressing current and future sanitation demands. Due to the complex design and inherent characteristics of the system's input material, there are a number of stochastic variables which may significantly affect the system's performance. The non-intrusive probabilistic approach adopted in this study combines a finite number of deterministic thermodynamic process simulations with an artificial neural network (ANN) approximation model and Monte Carlo simulations (MCS) to assess the effect of system uncertainties on the predicted performance of the NMT system. The joint probability distributions of the process performance indicators suggest a Stirling Engine (SE) power output in the range of 61.5-73 W with a high confidence interval (CI) of 95%. In addition, there is high probability (with 95% CI) that the NMT system can achieve positive net power output between 15.8 and 35 W. A sensitivity study reveals the system power performance is mostly affected by SE heater temperature. Investigation into the environmental performance of the NMT design, including water recovery and CO2/NOx emissions, suggests significant environmental benefits compared to conventional systems. Results of the probabilistic analysis can better inform future improvements on the system design and operational strategy and this probabilistic assessment framework can also be applied to similar complex engineering systems.

7.
Energy Convers Manag ; 163: 507-524, 2018 May 01.
Article in English | MEDLINE | ID: mdl-29725148

ABSTRACT

This article describes the design and commissioning of a micro-combustor for energy recovery from human faeces, which can operate both in updraft and downdraft modes. Energy recovery from faecal matter via thermochemical conversion has recently been identified as a feasible solution for sanitation problems in low income countries and locations of high income countries where access to sewage infrastructures is difficult or not possible. This technology can be applied to waterless toilets with the additional outcome of generating heat and power that can be used to pre-treat the faeces before their combustion and to ensure that the entire system is self-sustaining. The work presented here is framed within the Nano Membrane Toilet (NMT) project that is being carried out at Cranfield University, as part of the Reinvent the Toilet Challenge of the Bill and Melinda Gates Foundation. For this study, preliminary trials using simulant faeces pellets were first carried out to find out the optimum values for the main operating variables at the scale required by the process, i.e. a fuel flowrate between 0.4 and 1.2 g/min of dry faeces. Parameters such as ignition temperature, residence time, and maximum temperature reached, were determined and used for the final design of the bench-scale combustor prototype. The prototype was successfully commissioned and the first experimental results, using real human faeces, are discussed in the paper.

8.
Sci Total Environ ; 639: 657-672, 2018 Oct 15.
Article in English | MEDLINE | ID: mdl-29800857

ABSTRACT

In many developing countries, including South Africa, water scarcity has resulted in poor sanitation practices. The majority of the sanitation infrastructures in those regions fail to meet basic hygienic standards. This along with the lack of proper sewage/wastewater infrastructure creates significant environmental and public health concerns. A self-sustained, waterless "Nano Membrane Toilet" (NMT) design was proposed as a result of the "Reinvent the Toilet Challenge" funded by the Bill and Melinda Gates Foundation. A "cradle-to-grave" life cycle assessment (LCA) approach was adopted to study the use of NMT in comparison with conventional pour flush toilet (PFT) and urine-diverting dry toilet (UDDT). All three scenarios were applied in the context of South Africa. In addition, a Quantitative Microbial Risk Assessment (QMRA) was used to reflect the impact of the pathogen risk on human health. LCA study showed that UDDT had the best environmental performance, followed by NMT and PFT systems for all impact categories investigated including human health, resource and ecosystem. This was mainly due to the environmental credits associated with the use of urine and compost as fertilizers. However, with the incorporation of the pathogen impact into the human health impact category, the NMT had a significant better performance than the PFT and UDDT systems, which exhibited an impact category value 4E + 04 and 4E + 03 times higher, respectively. Sensitivity analysis identified that the use of ash as fertilizer, electricity generation and the reduction of NOx emissions were the key areas that influenced significantly the environmental performance of the NMT system.


Subject(s)
Sanitation , Waste Disposal, Fluid/methods , Wastewater/microbiology , Environment , Humans , Risk Assessment , Sewage , South Africa
9.
Fuel (Lond) ; 203: 781-791, 2017 Sep 01.
Article in English | MEDLINE | ID: mdl-28867824

ABSTRACT

Fuel blending is a widely used approach in biomass combustion, particularly for feedstocks with low calorific value and high moisture content. In on-site sanitation technologies, fuel blending is proposed as a pre-treatment requirement to reduce moisture levels and improve the physiochemical properties of raw faeces prior to drying. This study investigates the co-combustion performance of wood dust: raw human faeces blends at varying air-to-fuel ratios in a bench-scale combustor test rig. It concludes with ash composition analyses and discusses their potential application and related problems. The study shows that a 50:50 wood dust (WD): raw human faeces (FC) can reduce moisture levels in raw human faeces by ∼40% prior to drying. The minimum acceptable blend for treating moist faeces without prior drying at a combustion air flow rate of 14-18 L/min is 30:70 WD: FC. For self-sustained ignition and flame propagation, the minimum combustion temperature required for conversion of the fuel to ash is ∼400 °C. The most abundant elements in faecal ash are potassium and calcium, while elements such as nickel, aluminium and iron are in trace quantities. This suggests the potential use of faecal ash as a soil conditioner, but increases the tendency for fly ash formation and sintering problems.

10.
Fuel (Lond) ; 184: 780-791, 2016 Nov 15.
Article in English | MEDLINE | ID: mdl-27857449

ABSTRACT

Poor sanitation is one of the major hindrances to the global sustainable development goals. The Reinvent the Toilet Challenge of the Bill and Melinda Gates Foundation is set to develop affordable, next-generation sanitary systems that can ensure safe treatment and wide accessibility without compromise on sustainable use of natural resources and the environment. Energy recovery from human excreta is likely to be a cornerstone of future sustainable sanitary systems. Faeces combustion was investigated using a bench-scale downdraft combustor test rig, alongside with wood biomass and simulant faeces. Parameters such as air flow rate, fuel pellet size, bed height, and fuel ignition mode were varied to establish the combustion operating range of the test rig and the optimum conditions for converting the faecal biomass to energy. The experimental results show that the dry human faeces had a higher energy content (∼25 MJ/kg) than wood biomass. At equivalence ratio between 0.86 and 1.12, the combustion temperature and fuel burn rate ranged from 431 to 558 °C and 1.53 to 2.30 g/min respectively. Preliminary results for the simulant faeces show that a minimum combustion bed temperature of 600 ± 10 °C can handle faeces up to 60 wt.% moisture at optimum air-to-fuel ratio. Further investigation is required to establish the appropriate trade-off limits for drying and energy recovery, considering different stool types, moisture content and drying characteristics. This is important for the design and further development of a self-sustained energy conversion and recovery systems for the NMT and similar sanitary solutions.

11.
Energy Convers Manag ; 126: 352-361, 2016 Oct 15.
Article in English | MEDLINE | ID: mdl-27766002

ABSTRACT

With about 2.4 billion people worldwide without access to improved sanitation facilities, there is a strong incentive for development of novel sanitation systems to improve the quality of life and reduce mortality. The Nano Membrane Toilet is expected to provide a unique household-scale system that would produce electricity and recover water from human excrement and urine. This study was undertaken to evaluate the performance of the conceptual energy and water recovery system for the Nano Membrane Toilet designed for a household of ten people and to assess its self-sustainability. A process model of the entire system, including the thermochemical conversion island, a Stirling engine and a water recovery system was developed in Aspen Plus®. The energy and water recovery system for the Nano Membrane Toilet was characterised with the specific net power output of 23.1 Wh/kgsettledsolids and water recovery rate of 13.4 dm3/day in the nominal operating mode. Additionally, if no supernatant was processed, the specific net power output was increased to 69.2 Wh/kgsettledsolids. Such household-scale system would deliver the net power output (1.9-5.8 W). This was found to be enough to charge mobile phones or power clock radios, or provide light for the household using low-voltage LED bulbs.

SELECTION OF CITATIONS
SEARCH DETAIL
...