Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Cytotherapy ; 25(2): 220-228, 2023 02.
Article in English | MEDLINE | ID: mdl-36274006

ABSTRACT

BACKGROUND AIMS: Although biologiocal ancillay materials (AMs) have specific risk associated with their derivations, it plays key role to manufature cell and gene therapy (CGT) products. It is important to understand the regulation relevant to AMs for developers. METHODS: The authors investigated the guidelines and pharmacopeia (hereinafter referred to as "guidelines") for biological AMs used for the manufacture of CGT products in Asia (China, India, Japan, Korea and Taiwan). In addition, the authors benchmarked the relevant guidelines in the United States (US) and European Union (EU). RESULTS AND DISCUSSIONS: The guidelines could be classified into two types based on whether specific AMs are scoped: (i) general guidelines for risk assessment of AMs and (ii) guidelines for specific AMs. The authors compared the risk categories for each type of AM provided in the general guidelines between the US and China and the specific requirements for bovine serum and trypsin in the guidelines of China, Japan, Taiwan, US and EU. The authors further compiled in-depth descriptions of the respective regulations in China, India, Japan, Korea and Taiwan. There is limited availability of some guidelines for specific AMs. Moreover, there are no common requirements established across the surveyed countries and regions. Therefore, the authors suggest a risk assessment approach for AMs with consideration of their biological origin and traceability, production steps applied and ability to control or remove AMs from the final medicinal product over the CGT manufacturing process.


Subject(s)
European Union , United States , Asia , China , Japan , India
2.
Stem Cell Res Ther ; 12(1): 279, 2021 05 10.
Article in English | MEDLINE | ID: mdl-33971964

ABSTRACT

BACKGROUND: We have previously demonstrated that a pooled population of bone marrow-derived, allogeneic mesenchymal stromal cells (BMMSC), Stempeucel®-1, produced under good manufacturing practices (GMP) conditions, showed clinical efficacy and safety in patients suffering from critical limb ischemia (CLI) due to Buerger's disease. While Stempeucel®-1 is currently used for CLI and other clinical indications, we wanted to ensure that the product's continuity is addressed by developing and characterizing a second generation of pooled product (Stempeucel®-1A), manufactured identically from second BM aspirates of the same three donors after a 2-year interval. METHODS: The two versions of Stempeucel® were manufactured and subjected to gene and protein expression analysis. The nature of various growth factors/cytokines secreted and immunomodulatory activity of these two cell populations were compared directly by various in vitro assays. The preclinical efficacy of these two cell types was compared in an experimental model of hind limb ischemia (HLI) in BALB/c nude mice. The reversal of ischemia, blood flow, and muscle regeneration were determined by functional scoring, laser Doppler imaging, and immunohistochemical analyses. RESULTS: Qualitative and quantitative analyses of genes and proteins involved in promoting angiogenic activity and immune regulatory functions revealed high levels of correlation between Stempeucel®-1 and Stempeucel®-1A cell populations. Moreover, intramuscular (i.m) administration of these two cell products in the ischemic limbs of BALB/c nude mice showed significant repair (≥ 70%) of toe and foot necrosis, leading to improved ambulatory function and limb salvage. Furthermore, a biodistribution kinetics study showed that Stempeucel®-1 was mostly localized in the ischemic muscles of mice for a significantly longer time compared to normal muscles, thus playing an essential role in modulating and reversing HLI damage. CONCLUSIONS: This study shows that with a reproducible manufacturing procedure, it is possible to generate large numbers of pooled mesenchymal stromal cells from human bone marrow samples to establish product equivalence. We conclude from these results that, for the first time, two pooled, allogeneic BMMSC products can be repeatedly manufactured at different time intervals using a two-tier cell banking process with robust and comparable angiogenic properties to treat ischemic diseases.


Subject(s)
Hematopoietic Stem Cell Transplantation , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Animals , Bone Marrow , Hindlimb , Humans , Ischemia/therapy , Mice , Mice, Inbred BALB C , Mice, Nude , Neovascularization, Physiologic , Tissue Distribution
3.
Cell Reprogram ; 21(5): 270-284, 2019 10.
Article in English | MEDLINE | ID: mdl-31596624

ABSTRACT

The embryonic stem cell line derivation from nonpermissive mouse strains is a challenging and highly inefficient process. The cellular reprogramming strategy provides an alternative route for generating pluripotent stem cell (PSC) lines from such strains. In this study, we successfully derived an enhanced green fluorescent protein (EGFP)-transgenic "N9" induced pluripotent stem cell (iPS cell, iPSC) line from the FVB/N strain-derived mouse embryonic fibroblasts (MEFs). The exposure of MEFs to human OCT4, SOX2, KLF4, and c-MYC (OSKM) transgenes via lentiviral transduction resulted in complete reprogramming. The N9 iPS cell line demonstrated all the criteria of a typical mouse PSC line, including normal colony morphology and karyotype (40,XY), high replication and propagation efficiencies, expression of the pluripotency-associated genes, spontaneous differentiation to three germ lineage-derived cell types, and robust potential of chimeric blastocyst formation. Taken together, using human OSKM genes for transduction, we report, for the first time, the successful derivation of an EGFP-expressing iPS cell line from a genetically nonpermissive transgenic FVB/N mouse. This cell line could provide opportunities for designing protocols for efficient derivation of PSC lines from other nonpermissive strains and developing mouse models of human diseases.


Subject(s)
Embryo, Mammalian/cytology , Fibroblasts/cytology , Green Fluorescent Proteins/metabolism , Induced Pluripotent Stem Cells/cytology , Teratoma/pathology , Animals , Cell Lineage , Cells, Cultured , Embryo, Mammalian/metabolism , Female , Fibroblasts/metabolism , Green Fluorescent Proteins/genetics , Induced Pluripotent Stem Cells/metabolism , Kruppel-Like Factor 4 , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism , Male , Mice , Mice, Transgenic , Octamer Transcription Factor-3/genetics , Octamer Transcription Factor-3/metabolism , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , SOXB1 Transcription Factors/genetics , SOXB1 Transcription Factors/metabolism , Teratoma/genetics , Teratoma/metabolism
4.
J Tissue Eng Regen Med ; 10(2): 108-19, 2016 Feb.
Article in English | MEDLINE | ID: mdl-23495227

ABSTRACT

The regenerative potential of mesenchymal stromal or stem cells (MSCs) has generated tremendous interest for treating various degenerative diseases. Regulatory preference is to use a culture medium that is devoid of bovine components for stem cell expansion intended for therapeutic applications. However, a clear choice an alternative to fetal bovine serum (FBS) has not yet emerged. We have screened five different commercially available serum-free media (SFM) for their ability to support the growth and expansion of pre-isolated undifferentiated bone marrow-derived MSCs (BM-MSCs) and compared the results with cells grown in standard FBS-containing medium as control. In addition, based on initial screening results, BD Mosaic™ Mesenchymal Stem Cell Serum-free (BD-SFM) medium was evaluated in large-scale cultures for the performance and culture characteristics of BM-MSCs. Of the five different serum-free media, BD-SFM enhanced BM-MSCs growth and expansion in Cell STACK (CS), but the cell yield per CS-10 was less when compared to the control medium. The characteristics of MSCs were measured in terms of population doubling time (PDT), cell yield and expression of MSC-specific markers. Significant differences were observed between BD-SFM and control medium in terms of population doublings (PDs), cell yield, CFU-F and morphological features, whereas surface phenotype and differentiation potentials were comparable. The BD-SFM-cultured MSCs were also found to retain the differentiation potential, immune-privileged status and immunosuppressive properties inherent to MSCs. Our results suggest that BD-SFM supports large-scale expansion of BM-MSCs for therapeutic use.


Subject(s)
Bone Marrow Cells/cytology , Cell Separation/methods , Mesenchymal Stem Cells/cytology , Biological Assay , Cell Differentiation , Cell Proliferation , Cell Shape , Colony-Forming Units Assay , Culture Media, Serum-Free , Humans , Immunomodulation , Immunophenotyping , Immunosuppression Therapy , Kinetics , Serum Albumin, Bovine/metabolism , Young Adult
5.
Indian J Med Res ; 144(6): 852-864, 2016 Dec.
Article in English | MEDLINE | ID: mdl-28474622

ABSTRACT

BACKGROUND & OBJECTIVES: Administration of ex vivo-expanded human bone marrow-derived mesenchymal stromal cells (hBMMSC) obtained from single donors has shown therapeutic benefits in both preclinical and clinical studies. In this study, the safety, toxicity and biodistribution profiles of a pooled hBMMSC population, produced from three healthy donors were assessed in rodent and non-rodents. METHODS: The pooled hBMMSC population was characterized by their expression of various cell surface markers, differentiation potential and immunomodulatory activity. To establish in vivo safety of the pooled cells, these were administered by various injection routes into rodents and non-rodents to determine overall toxicity, biodistribution and tumorigenic potential in a series of preclinical studies. RESULTS: Single injections of hBMMSC at various doses through intravenous or intramuscular routes did not cause toxicity in rats and rabbits. In addition, repeat administration of hBMMSC was also well tolerated by rats, and no prenatal toxicity was observed by multiple administration in the same animal species. Ex vivo-expanded and cryopreserved hBMMSCs did not induce tumour formation in severe combined immunodeficient (SCID) mice. INTERPRETATION & CONCLUSIONS: Our results showed that the pooled hBMMSC population was non-toxic, non-teratogenic and non-tumorigenic in animals. Further studies need to be done to find out if it can be safely administered in human patients.


Subject(s)
Bone Marrow Cells/cytology , Mesenchymal Stem Cell Transplantation/adverse effects , Mesenchymal Stem Cells/cytology , Animals , Cell Differentiation/genetics , Cell Differentiation/immunology , Humans , Male , Mesenchymal Stem Cells/immunology , Mice , Mice, SCID/immunology , Osteogenesis/genetics , Osteogenesis/immunology , Rabbits , Rats
6.
Cell Tissue Res ; 356(1): 123-35, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24448665

ABSTRACT

Bone marrow-derived mesenchymal stromal cells (BM-MSCs) heralded a new beginning for regenerative medicine and generated tremendous interest as the most promising source for therapeutic application. Most cell therapies require stringent regulatory compliance and prefer the use of serum-free media (SFM) or xeno-free media (XFM) for the MSC production process, starting from the isolation onwards. Here, we report on serum-free isolation and expansion of MSCs and compare them with cells grown in conventional fetal bovine serum (FBS)-containing media as a control. The isolation, proliferation and morphology analysis demonstrated significant differences between MSCs cultured in various SFM/XFM in addition to their difference with FBS controls. BD Mosaic™ Mesenchymal Stem Cell Serum-Free media (BD-SFM) and Mesencult-XF (MSX) supported the isolation, sequential passaging, tri-lineage differentiation potential and acceptable surface marker expression profile of BM-MSCs. Further, MSCs cultured in SFM showed higher immune suppression and hypo-immunogenicity properties, making them an ideal candidate for allogeneic cell therapy. Although cells cultured in control media have a significantly higher proliferation rate, BM-MSCs cultured in BD-SFM or MSX media are the preferred choice to meet regulatory requirements as they do not contain bovine serum. While BM-MSCs cultured in BD-SFM and MSX media adhered to all MSC characteristics, in the case of few parameters, the performance of cells cultured in BD-SFM was superior to that of MSX media. Pre-clinical safety and efficiency studies are required before qualifying SFM or XFM media-derived MSCs for therapeutic applications.


Subject(s)
Bone Marrow Cells/cytology , Cell Separation/methods , Mesenchymal Stem Cells/cytology , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Cell Shape/drug effects , Cell Survival/drug effects , Colony-Forming Units Assay , Culture Media, Serum-Free/pharmacology , Humans , Immunomodulation/drug effects , Immunophenotyping , Immunosuppression Therapy , Kinetics , Mesenchymal Stem Cells/drug effects , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...