Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
J Basic Microbiol ; 62(8): 889-899, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35349170

ABSTRACT

Apparently, climate change is observed in form of increased greenhouse gases (CH4 , CO2 , N2 O, CFC), temperature (0.5-1°C), and UV radiations (UV B and UV C). It is affecting every aspect of ecosystem functioning; however, terrestrial crops are the most vulnerable group and crop productivity largely remains a challenge. Due to climate change, seed yield and nutrient depletion are inevitable in future scenarios. To overcome this problem microbial groups that exhibit plant growth promoting attributes and provide protection against environmental stress should be studied. One such group is the pink pigmented facultative methylotrophs (PPFMs) that can induce overall fitness to plants. PPFMs are involved in phosphorous mineralization, siderophore, ACC deaminase, phytohormone production, and assimilation of greenhouse gases. Additionally, these organisms can also resist harmful UV radiations effectively as they possess polyketide synthases that could serve as source of novel bioactives that can protect plant from abiotic stress. The review article comprehensively highlights the multifunctional traits of PPFMs and their role in mitigating climate change with an aim to use this important organism as microbial inoculants for sustainable agriculture under climate-changing scenarios.


Subject(s)
Greenhouse Gases , Climate Change , Ecosystem , Plants , Stress, Physiological
2.
Front Microbiol ; 13: 899268, 2022.
Article in English | MEDLINE | ID: mdl-36687662

ABSTRACT

Increasing UV radiation in the atmosphere due to the depletion of ozone layer is emerging abiotic stress for agriculture. Although plants have evolved to adapt to UV radiation through different mechanisms, but the role of phyllosphere microorganisms in counteracting UV radiation is not well studied. The current experiment was undertaken to evaluate the role of phyllosphere Methylobacteria and its metabolite in the alleviation of abiotic stress rendered by ultraviolet (UV) radiation. A potential pink pigmenting methylotroph bacterium was isolated from the phylloplane of the rice plant (oryzae sativa). The 16S rRNA gene sequence of the bacterium was homologous to the Methylobacter sp. The isolate referred to as Methylobacter sp N39, produced beta-carotene at a rate (µg ml-1 d-1) of 0.45-3.09. Biosynthesis of beta-carotene was stimulated by brief exposure to UV for 10 min per 2 days. Carotenoid biosynthesis was predicted as y = 3.09 × incubation period + 22.151 (r 2 = 0.90). The carotenoid extract of N39 protected E. coli from UV radiation by declining its death rate from 14.67% min-1 to 4.30% min-1 under UV radiation. Application of N39 cells and carotenoid extract also protected rhizobium (Bradyrhizobium japonicum) cells from UV radiation. Scanning electron microscopy indicated that the carotenoid extracts protected E. coli cells from UV radiation. Foliar application of either N39 cells or carotenoid extract enhanced the plant's (Pigeon pea) resistance to UV irradiation. This study highlight that Methylobacter sp N39 and its carotenoid extract can be explored to manage UV radiation stress in agriculture.

3.
Can J Microbiol ; 67(6): 464-475, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33301360

ABSTRACT

Experiments were carried out to elucidate linkage between methane consumption and mineralization of phosphorous (P) from different P sources. The treatments were (i) no CH4 + no P amendment (absolute control), (ii) with CH4 + no P amendment (control), (iii) with CH4 + inorganic P as Ca3(PO4)2, and (iv) with CH4 + organic P as sodium phytate. P sources were added at 25 µg P·(g soil)-1. Soils were incubated to undergo three repeated CH4 feeding cycles, referred to as feeding cycle I, feeding cycle II, and feeding cycle III. CH4 consumption rate k (µg CH4 consumed·(g soil)-1·day-1) was 0.297 ± 0.028 in no P amendment control, 0.457 ± 0.016 in Ca3(PO4)2, and 0.627 ± 0.013 in sodium phytate. Rate k was stimulated by 2 to 6 times over CH4 feeding cycles and followed the trend of sodium phytate > Ca3(PO4)2 > no P amendment control. CH4 consumption stimulated P solubilization from Ca3(PO4)2 by a factor of 2.86. Acid phosphatase (µg paranitrophenol released·(g soil)-1·h-1) was higher in sodium phytate than the no P amendment control. Abundance of 16S rRNA and pmoA genes increased with CH4 consumption rates. The results of the study suggested that CH4 consumption drives mineralization of unavailable inorganic and organic P sources in the soil ecosystem.


Subject(s)
Ecosystem , Methane/metabolism , Phosphorus/metabolism , Soil , Acid Phosphatase/analysis , Acid Phosphatase/metabolism , Biological Availability , Genes, Microbial/genetics , Methane/analysis , Oxygenases/genetics , Phosphorus/analysis , Phosphorus/pharmacokinetics , RNA, Ribosomal, 16S/genetics , Soil/chemistry , Soil Microbiology
4.
J Hazard Mater ; 402: 123572, 2021 01 15.
Article in English | MEDLINE | ID: mdl-32745878

ABSTRACT

Current experiment envisages evaluating N2O production from nitrification and denitrification under the influence of weedicides, cropping systems and conservation agriculture (CA). The weed control treatments were conventional hand weeding (no weedicide), pre emergence weedicide pendimethalin and post emergence weedicide imazethapyr for soybean, atrazine for maize. Experiment was laid out in randomized block design with three replicates. Soils were collected from different depths and incubated at different moisture holding capacity (MHC). N2O production from nitrification varied from 2.77 to 6.04 ng N2O g-1 soil d-1 and from denitrification varied from 0.05 to 1.34 ng N2O g-1 soil d-1. Potential nitrification rate (0.16-0.39 mM NO3 produced g-1 soil d-1) was higher than potential denitrification rate (0.45-0.93 mM NO3 reduced g-1 soil d-1). N2O production, nitrification, denitrification, and microbial gene abundance were higher in maize than soybean. Both N2O production and nitrification decreased (p < 0.05) with soil depth, while denitrification increased (p < 0.05) with soil depth. Abundance of eubacteria and ammonia oxidizing bacteria (AOB) were high (p < 0.01) at upper soil layer and declined with depth. Abundance of ammonia oxidizing archaea (AOA) increased (p < 0.05) with soil depth. Study concludes that intensive use of weedicides in CA may stimulate N2O production.


Subject(s)
Nitrous Oxide , Zea mays , Agriculture , Ammonia , Denitrification , Nitrification , Soil , Soil Microbiology , Glycine max
5.
Front Microbiol ; 10: 772, 2019.
Article in English | MEDLINE | ID: mdl-31139154

ABSTRACT

The processes regulating nitrification in soils are not entirely understood. Here we provide evidence that nitrification rates in soil may be affected by complexed nitrate molecules and microbial volatile organic compounds (mVOCs) produced during nitrification. Experiments were carried out to elucidate the overall nature of mVOCs and biogenic nitrates produced by nitrifiers, and their effects on nitrification and redox metabolism. Soils were incubated at three levels of biogenic nitrate. Soils containing biogenic nitrate were compared with soils containing inorganic fertilizer nitrate (KNO3) in terms of redox metabolism potential. Repeated NH4-N addition increased nitrification rates (mM NO3 1- produced g-1 soil d-1) from 0.49 to 0.65. Soils with higher nitrification rates stimulated (p < 0.01) abundances of 16S rRNA genes by about eight times, amoA genes of nitrifying bacteria by about 25 times, and amoA genes of nitrifying archaea by about 15 times. Soils with biogenic nitrate and KNO3 were incubated under anoxic conditions to undergo anaerobic respiration. The maximum rates of different redox metabolisms (mM electron acceptors reduced g-1 soil d-1) in soil containing biogenic nitrate followed as: NO3 1- reduction 4.01 ± 0.22, Fe3+ reduction 5.37 ± 0.12, SO4 2- reduction 9.56 ± 0.16, and CH4 production (µg g-1 soil) 0.46 ± 0.05. Biogenic nitrate inhibited denitrificaton 1.4 times more strongly compared to mineral KNO3. Raman spectra indicated that aliphatic hydrocarbons increased in soil during nitrification, and these compounds probably bind to NO3 to form biogenic nitrate. The mVOCs produced by nitrifiers enhanced (p < 0.05) nitrification rates and abundances of nitrifying bacteria. Experiments suggest that biogenic nitrate and mVOCs affect nitrification and redox metabolism in soil.

6.
Ecotoxicol Environ Saf ; 157: 409-416, 2018 Aug 15.
Article in English | MEDLINE | ID: mdl-29655156

ABSTRACT

Climate change may increase the pest infestation leading to intensive use of insecticides. However, the effect of insecticide and climate factors on soil methane (CH4) consumption is less understood. A laboratory experiment was carried out to evaluate the effect of temperature (15 °C, 35 °C, and 45 °C), moisture holding capacity (MHC) (60%, 100%), biochar (0%, 1%) and chlorpyrifos (0 ppm, 10 ppm) on CH4 consumption and microbial abundance in a tropical Vertisol of central India. Methane consumption rate k (ng CH4 consumed g-1 soil d-1) varied from 0.065 ±â€¯0.005 to 0.608 ±â€¯0.018. Lowest k was in 15 °C-60% moisture holding capacity (MHC)-no biochar and with 10 ppm chlorpyrifos. Highest k was in 35 °C-100% MHC-1% biochar and without (0 ppm) chlorpyrifos. Cumulative CO2 production (ng CO2 produced g-1 soil d-1) varied from 446 ±â€¯15 to 1989 ±â€¯116. Both CH4 consumption and CO2 production peaked in the treatment of 35 °C-100% MHC-1% biochar. Chlorpyrifos inhibited CH4 consumption irrespective of treatments. Abundance of 16S rRNA of eubacteria (× 106 g-1 soil) varied from 2.33 ±â€¯0.58 to 85.67 ±â€¯7.00. Abundance of 16S rRNA genes representing Actinomycetes (× 104 g-1 soil) varied from 7.67 ±â€¯1.53 and pmoA gene (Methanotrophs) (× 105 g-1 soil) varied from 1.23 ±â€¯0.59 to 34.33 ±â€¯6.51. Chlorpyrifos inhibited abundance of heterotrophic bacteria and methanotrophs but stimulated actinomycetes. Biochar stimulated the CH4 consumption, CO2 production and microbial abundance. Study highlighted that use of chlorpyrifos under climate change factors may inhibit CH4 consumption but the use of biochar may alleviate the negative effect of the chlorpyrifos.


Subject(s)
Charcoal/analysis , Chlorpyrifos/analysis , Climate , Insecticides/analysis , Methane/metabolism , Soil Microbiology , Actinobacteria/isolation & purification , Bacteria/isolation & purification , Carbon Dioxide/analysis , Chemical Phenomena , DNA, Bacterial/isolation & purification , India , RNA, Ribosomal, 16S/isolation & purification , Soil/chemistry , Soil Pollutants/analysis
7.
Can J Microbiol ; 63(10): 822-833, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28759736

ABSTRACT

The complex role of phylloplane microorganisms is less understood than that of rhizospheric microorganisms in lieu of their pivotal role in plant's sustainability. This experiment aims to study the diversity of the culturable phylloplane bacteria of Jatropha curcas and evaluate their growth-promoting activities towards maize seedling vigor. Heterotrophic bacteria were isolated from the phylloplane of J. curcas and their 16S rRNA genes were sequenced. Sequences of the 16S rRNA gene were very similar to those of species belonging to the classes Bacillales (50%), Gammaproteobacteria (21.8%), Betaproteobacteria (15.6%), and Alphaproteobacteria (12.5%). The phylloplane bacteria preferred to utilize alcohol rather than monosaccharides and polysaccharides as a carbon source. Isolates exhibited ACC (1-aminocyclopropane-1-carboxylic acid) deaminase, phosphatase, potassium solubilization, and indole acetic acid (IAA) production activities. The phosphate-solubilizing capacity (mg of PO4 solubilized by 108 cells) varied from 0.04 to 0.21. The IAA production potential (µg IAA produced by 108 cells in 48 h) of the isolates varied from 0.41 to 9.29. Inoculation of the isolates to maize seed significantly increased shoot and root lengths of maize seedlings. A linear regression model of the plant-growth-promoting activities significantly correlated (p < 0.01) with the growth parameters. Similarly, a correspondence analysis categorized ACC deaminase and IAA production as the major factors contributing 41% and 13.8% variation, respectively, to the growth of maize seedlings.


Subject(s)
Bacteria/isolation & purification , Jatropha/microbiology , Zea mays/microbiology , Amino Acids, Cyclic/metabolism , Bacteria/genetics , Bacteria/metabolism , Carbon-Carbon Lyases/metabolism , Indoleacetic Acids/metabolism , Plant Leaves/growth & development , Plant Leaves/microbiology , RNA, Ribosomal, 16S/genetics , Seedlings/growth & development , Seedlings/microbiology , Seeds/growth & development , Seeds/microbiology , Zea mays/enzymology , Zea mays/growth & development
8.
Environ Sci Pollut Res Int ; 23(5): 4358-69, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26697861

ABSTRACT

This review addresses the perspectives of Azolla as a multifaceted aquatic resource to ensure ecosystem sustainability. Nitrogen fixing potential of cyanobacterial symbiont varies between 30 and 60 kg N ha(-1) which designates Azolla as an important biological N source for agriculture and animal industry. Azolla exhibits high bioremediation potential for Cd, Cr, Cu, and Zn. Azolla mitigates greenhouse gas emission from agriculture. In flooded rice ecosystem, Azolla dual cropping decreased CH4 emission by 40 % than did urea alone and also stimulated CH4 oxidation. This review highlighted integrated approach using Azolla that offers enormous public health, environmental, and cost benefits.


Subject(s)
Agriculture , Air Pollutants/isolation & purification , Climate Change , Ferns/growth & development , Tracheophyta/growth & development , Water Pollutants, Chemical/isolation & purification , Animals , Cyanobacteria/growth & development , Ecosystem , Nitrogen Fixation , Oryza/growth & development
9.
3 Biotech ; 6(2): 257, 2016 Dec.
Article in English | MEDLINE | ID: mdl-28330329

ABSTRACT

Plant-microbial interaction in rhizosphere plays vital role in shaping plant's growth and ecosystem function. Most of the rhizospheric microbial diversity studies are restricted to bacteria. In natural ecosystem, archaea also constitutes a major component of the microbial population. However, their diversity is less known compared to bacteria. Experiments were carried out to examine diversity of bacteria and archaea in the rhizosphere of bioenergy crop Jatropha curcas (J. curcas). Samples were collected from three locations varying widely in the soil physico-chemical properties. Diversity was estimated by terminal restriction fragment length polymorphism (TRFLP) targeting 16S rRNA gene of bacteria and archaea. Fifteen bacterial and 17 archaeal terminal restriction fragments (TRFs) were retrieved from J. curcas rhizosphere. Bacterial indicative TRFs were Actinobacteria, Firmicutes, Acidobacteria, Verrumicrobiaceae, and Chlroflexi. Major archaeal TRFs were crenarchaeota, and euryarchaeota. In case of bacteria, relative fluorescence was low for TRF160 and high for TRF51, TRF 420. Similarly, for archaea relative fluorescence of TRF 218, and TRF 282 was low and high for TRF 278, TRF468 and TRF93. Principal component analysis (PCA) of bacterial TRFs designated PC 1 with 46.83% of variation and PC2 with 31.07% variation. Archaeal TRFs designated 90.94% of variation by PC1 and 9.05% by PC2. Simpson index varied from 0.530 to 0.880 and Shannon index from 1.462 to 3.139 for bacteria. For archaea, Simpson index varied from 0.855 to 0.897 and Shannon index varied from 3.027 to 3.155. Study concluded that rhizosphere of J. curcas constituted of diverse set of both bacteria and archaea, which might have promising plant growth promoting activities.

10.
Environ Monit Assess ; 186(6): 3743-53, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24504670

ABSTRACT

There is worldwide concern over the increase use of nanoparticles (NPs) and their ecotoxicological effect. It is not known if the annual production of tons of industrial nanoparticles (NPs) has the potential to impact terrestrial microbial communities, which are so necessary for ecosystem functioning. Here, we have examined the consequences of adding the NPs particularly the metal oxide (CuO, ZnO) on CH4 oxidation activity in vertisol and the abundance of heterotrophs, methane oxidizers, and ammonium oxidizers. Soil samples collected from the agricultural field located at Madhya Pradesh, India, were incubated with either CuO and ZnO NPs or ionic heavy metals (CuCl2, ZnCl2) separately at 0, 10, and 20 µg g(-1) soil. CH4 oxidation activity in the soil samples was estimated at 60 and 100 % moisture holding capacity (MHC) in order to link soil moisture regime with impact of NPs. NPs amended to soil were highly toxic for the microbial-mediated CH4 oxidation, compared with the ionic form. The trend of inhibition was Zn 20 > Zn 10 > Cu 20 > Cu 10. NPs delayed the lag phase of CH4 oxidation to a maximum of 4-fold and also decreased the apparent rate constant k up to 50 % over control. ANOVA and Pearson correlation analysis (α = 0.01) revealed significant impact of NPs on the CH4 oxidation activity and microbial abundance (p < 0.0001, and high F statistics). Principal component analysis (PCA) revealed that PC1 (metal concentration) rendered 76.06 % of the total variance, while 18.17 % of variance accounted by second component (MHC). Biplot indicated negative impact of NPs on CH4 oxidation and microbial abundance. Our result also confirmed that higher soil moisture regime alleviates toxicity of NPs and opens new avenues of research to manage ecotoxicity and environmental hazard of NPs.


Subject(s)
Copper/chemistry , Methane/analysis , Nanoparticles/chemistry , Soil Pollutants/chemistry , Soil/chemistry , Zinc Oxide/chemistry , Agriculture , Copper/analysis , India , Methane/chemistry , Nanoparticles/analysis , Oxidation-Reduction , Soil Pollutants/analysis , Zinc Oxide/analysis
11.
Microbes Environ ; 26(3): 261-5, 2011.
Article in English | MEDLINE | ID: mdl-21558677

ABSTRACT

A high-density 16S rRNA gene microarray was used to analyze microbial communities in a slurry of ethanol-amended, uranium-contaminated subsurface sediment. Of specific interest was the extent to which the microarray could detect temporal patterns in the relative abundance of major metabolic groups (nitrate-reducing, metal-reducing, sulfate-reducing, and methanogenic taxa) that were stimulated by ethanol addition. The results show that the microarray, when used in conjunction with geochemical data and knowledge of the physiological properties of relevant taxa, provided accurate assessment of the response of key functional groups to biostimulation.


Subject(s)
Bacteria/classification , Bacterial Typing Techniques/methods , DNA, Bacterial/genetics , Ethanol/metabolism , Geologic Sediments/microbiology , Oligonucleotide Array Sequence Analysis/methods , RNA, Ribosomal, 16S/genetics , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/metabolism , Geologic Sediments/chemistry , Molecular Sequence Data , Phylogeny , Uranium/metabolism
12.
Environ Sci Technol ; 42(12): 4384-90, 2008 Jun 15.
Article in English | MEDLINE | ID: mdl-18605559

ABSTRACT

A laboratory incubation experiment was conducted with uranium-contaminated subsurface sediment to assess the geochemical and microbial community response to ethanol amendment. A classical sequence of terminal electron-accepting processes (TEAPs) was observed in ethanol-amended slurries, with NO3- reduction, Fe(III) reduction, SO4(2-) reduction, and CH4 production proceeding in sequence until all of the added 13C-ethanol (9 mM) was consumed. Approximately 60% of the U(VI) content of the sediment was reduced during the period of Fe(III) reduction. No additional U(VI) reduction took place during the sulfate-reducing and methanogenic phases of the experiment Only gradual reduction of NO3-, and no reduction of U(VI), took place in ethanol-free slurries. Stimulation of additional Fe(III) or SO4(2-) reduction in the ethanol-amended slurries failed to promote further U(VI) reduction. Reverse transcribed 16S rRNA clone libraries revealed major increases in the abundance of organisms related to Dechloromonas, Geobacter, and Herbaspirillum in the ethanol-amended slurries. Phospholipid fatty acids (PLFAs) indicative of Geobacter showed a distinct increase in the amended slurries, and analysis of PLFA 13C/12C ratios confirmed the incorporation of ethanol into these PLFAs. A increase in the abundance of 13C-labeled PLFAs indicative of Desulfobacter, Desulfotomaculum, and Desulfovibrio took place during the brief period of sulfate reduction that followed the Fe(III) reduction phase. Our results show that major redox processes in ethanol-amended sediments can be reliably interpreted in terms of standard conceptual models of TEAPs in sediments. However, the redox speciation of uranium is complex and cannot be explained based on simplified thermodynamic considerations.


Subject(s)
Ethanol/chemistry , Geologic Sediments/chemistry , Radioactive Pollutants/metabolism , Soil Pollutants/metabolism , Uranium/metabolism , Biomass , Soil Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...