Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Neurochir (Wien) ; 165(11): 3549-3558, 2023 11.
Article in English | MEDLINE | ID: mdl-37464202

ABSTRACT

PURPOSE: MRI has become an essential diagnostic imaging modality for peripheral nerve pathology. Early MR imaging for peripheral nerve depended on inferred nerve involvement by visualizing downstream effects such as denervation muscular atrophy; improvements in MRI technology have made possible direct visualization of the nerves. In this paper, we share our early clinical experience with 7T for benign neurogenic tumors. MATERIALS: Patients with benign neurogenic tumors and 7T MRI examinations available were reviewed. Cases of individual benign peripheral nerve tumors were included to demonstrate 7T MRI imaging characteristics. All exams were performed on a 7T MRI MAGNETOM Terra using a 28-channel receive, single-channel transmit knee coil. RESULTS: Five cases of four pathologies were selected from 38 patients to depict characteristic imaging features in different benign nerve tumors and lesions using 7T MRI. CONCLUSION: The primary advantage of 7T over 3T is an increase in signal-to-noise ratio which allows higher in plane resolution so that the smallest neural structures can be seen and characterized. This improvement in MR imaging provides the opportunity for more accurate diagnosis and surgical planning in selected cases. As this technology continues to evolve for clinical purposes, we anticipate increasing applications and improved patient care using 7T MRI for the diagnosis of peripheral nerve masses.


Subject(s)
Neoplasms , Peripheral Nervous System Neoplasms , Humans , Magnetic Resonance Imaging/methods , Signal-To-Noise Ratio , Peripheral Nerves , Peripheral Nervous System Neoplasms/diagnostic imaging , Peripheral Nervous System Neoplasms/surgery
2.
J Magn Reson Imaging ; 50(5): 1534-1544, 2019 11.
Article in English | MEDLINE | ID: mdl-30779475

ABSTRACT

BACKGROUND: MR image intensity nonuniformity is often observed at 7T. Reference scans from the body coil used for uniformity correction at lower field strengths are typically not available at 7T. PURPOSE: To evaluate the efficacy of a novel algorithm, Uniform Combined Reconstruction (UNICORN), to correct receive coil-induced nonuniformity in musculoskeletal 7T MRI without the use of a reference scan. STUDY TYPE: Retrospective image analysis study. SUBJECTS: MRI data of 20 subjects was retrospectively processed offline. Field Strength/Sequence: Knees of 20 subjects were imaged at 7T with a single-channel transmit, 28-channel phased-array receive knee coil. A turbo-spin-echo sequence was used to acquire 33 series of images. ASSESSMENT: Three fellowship-trained musculoskeletal radiologists with cumulative experience of 42 years reviewed the images. The uniformity, contrast, signal-to-noise ratio (SNR), and overall image quality were evaluated for images with no postprocessing, images processed with N4 bias field correction algorithm, and the UNICORN algorithm. STATISTICAL TESTS: Intraclass correlation coefficient (ICC) was used for measuring the interrater reliability. ICC and 95% confidence intervals (CIs) were calculated using the R statistical package employing a two-way mixed-effects model based on a mean rating (k = 3) for absolute agreement. The Wilcoxon signed-rank test with continuity correction was used for analyzing the overall image quality scores. RESULTS: UNICORN was preferred among the three methods evaluated for uniformity in 97.9% of the pooled ratings, with excellent interrater agreement (ICC of 0.98, CI 0.97-0.99). UNICORN was also rated better than N4 for contrast and equivalent to N4 in SNR with ICCs of 0.80 (CI 0.72-0.86) and 0.67 (CI 0.54-0.77), respectively. The overall image quality scores for UNICORN were significantly higher than N4 (P < 6 × 10-13 ), with good to excellent interrater agreement (ICC 0.90, CI 0.86-0.93). DATA CONCLUSION: Without the use of a reference scan, UNICORN provides better image uniformity, contrast, and overall image quality at 7T compared with the N4 bias field-correction algorithm. LEVEL OF EVIDENCE: 4 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2019;50:1534-1544.


Subject(s)
Image Processing, Computer-Assisted/methods , Knee/diagnostic imaging , Magnetic Resonance Imaging , Muscle, Skeletal/diagnostic imaging , Algorithms , Humans , Observer Variation , Reference Values , Reproducibility of Results , Retrospective Studies , Signal-To-Noise Ratio
SELECTION OF CITATIONS
SEARCH DETAIL
...