Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Physiol ; 598(23): 5317-5332, 2020 12.
Article in English | MEDLINE | ID: mdl-32880976

ABSTRACT

KEY POINTS: Neurons of the enteric submucous plexus are challenged by osmolar fluctuations during digestion and absorption of nutrients. Central neurons are very sensitive to changes in osmolality but knowledge on that issue related to enteric neurons is sparse. The present study focuses on investigation of osmosensitivity of submucosal neurons including potential molecular mediating mechanisms. Results show that submucosal neurons respond to hypoosmolar stimuli with increased activity which is partially mediated by the transient receptor potential vanilloid 4 channel. We provided important information on osmosensitive properties of enteric neurons. These data are fundamental to better explain the nerve-mediated control of the gastrointestinal functions during physiological and pathophysiological (diarrhoea) conditions. ABSTRACT: Enteric neurons are located inside the gut wall, where they are confronted with changes in osmolality during (inter-) digestive periods. In particular, neurons of the submucous plexus (SMP), located between epithelial cells and blood vessels may sense and respond to osmotic shifts. The present study was conducted to investigate osmosensitivity of enteric submucosal neurons and the potential role of the transient receptor potential vanilloid 4 channel (TRPV4) as a mediator of enteric neuronal osmosensitivity. Therefore, freshly dissected submucosal preparations from guinea pig colon were investigated for osmosensitivity using voltage-sensitive dye and Ca2+ imaging. Acute hypoosmolar stimuli (final osmolality reached at ganglia of 94, 144 and 194 mOsm kg-1 ) were applied to single ganglia using a local perfusion system. Expression of TRPV4 in the SMP was quantified using qRT-PCR, and GSK1016790A and HC-067047 were used to activate or block the receptor, respectively, revealing its relevance in enteric osmosensitivity. On average, 11.0 [7.0/17.0] % of submucosal neurons per ganglion responded to the hypoosmolar stimulus. The Ca2+ imaging experiments showed that glia responded to the hypoosmolar stimulus, but with a delay in comparison with neurons. mRNA expression of TRPV4 could be shown in the SMP and blockade of the receptor by HC-067047 significantly decreased the number of responding neurons (0.0 [0.0/6.3] %) while the TRPV4 agonist GSK1016790A caused action potential discharge in a subpopulation of osmosensitive enteric neurons. The results of the present study provide insight into the osmosensitivity of submucosal enteric neurons and strongly indicate the involvement of TRPV4 as an osmotransducer.


Subject(s)
Myenteric Plexus , Submucous Plexus , Animals , Colon , Guinea Pigs , Neuroglia , Neurons
2.
Stem Cells Int ; 2016: 3710836, 2016.
Article in English | MEDLINE | ID: mdl-26697073

ABSTRACT

The gastrointestinal epithelium is characterized by a high turnover of cells and intestinal stem cells predominantly reside at the bottom of crypts and their progeny serve to maintain normal intestinal homeostasis. Accumulating evidence demonstrates the pivotal role of a niche surrounding intestinal stem cells in crypts, which consists of cellular and soluble components and creates an environment constantly influencing the fate of stem cells. Here we describe different 3D culture systems to culture gastrointestinal epithelium that should enable us to study the stem cell niche in vitro in the future: organoid culture and multilayered systems such as organotypic cell culture and culture of intestinal tissue fragments ex vivo. These methods mimic the in vivo situation in vitro by creating 3D culture conditions that reflect the physiological situation of intestinal crypts. Modifications of the composition of the culture media as well as coculturing epithelial organoids with previously described cellular components such as myofibroblasts, collagen, and neurons show the impact of the methods applied to investigate niche interactions in vitro. We further present a novel method to isolate labeled nerves from the enteric nervous system using Dclk1-CreGFP mice.

3.
Am J Gastroenterol ; 109(1): 99-109, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24189713

ABSTRACT

OBJECTIVES: Abnormal pain perception or visceral hypersensitivity (VH) is considered to be an important mechanism underlying symptoms in a subgroup of irritable bowel syndrome (IBS) patients. Increased TRPV1 (transient receptor potential cation channel subfamily V member 1) expression in rectal biopsies of IBS patients suggests a potentially important role for this nociceptor in the pathophysiology of IBS. However, evidence underscoring the involvement of TRPV1 in visceral perception in IBS is lacking. The objective of this study was to evaluate the role of TRPV1 in VH to rectal distension and clinical symptoms in patients with IBS. METHODS: A total of 48 IBS patients and 25 healthy volunteers (HVs) were invited to undergo subsequent assessment of sensitivity to rectal distensions and rectal capsaicin applications. Visceral sensitivity was evaluated by rectal distension at 3, 9, and 21 mm Hg above minimal distension pressure (MDP). Capsaicin was applied to the rectal mucosa (0.01%, 0.1%, or solvent only in random order). Visceral sensations (urge to defecate, pain, burning, and warmth sensation) were scored on a 100-mm visual analog scale (VAS). TRPV1 expression in rectal biopsies was determined by immunohistochemistry and real-time PCR. RESULTS: A total of 23 IBS patients (48%) were hypersensitive to rectal distensions (VH-IBS). A concentration-dependent increase of urge and pain perception was present in HVs and IBS patients during capsaicin 0.01 and 0.1% applications. VH-IBS patients experienced a significantly increased perception of pain, but not urge, during capsaicin applications compared with normosensitive patients (ns-IBS) and HVs. Increased pain perception was significantly associated with anxiety and VH, symptoms scores of abdominal pain, loose stools, and stool frequency. Anxiety experienced during the experimental procedure was enhanced in VH-IBS patients but not in ns-IBS or HVs. However, rectal TRPV1 expression was similar in VH-IBS, ns-IBS, and HVs on both mRNA and protein expression levels. TRPV1 expression levels did not correlate with pain perception to capsaicin or clinical symptoms in IBS patients or the subgroups. CONCLUSIONS: IBS patients with VH to rectal distension reveal increased pain perception to rectal application of capsaicin, as well as an increased anxiety response. No evidence for TRPV1 upregulation could be demonstrated. As both VH and anxiety are independently associated with increased pain perception to rectal capsaicin application, our data suggest that both peripheral and central factors are involved, with increased receptor sensitivity as a speculative possibility.


Subject(s)
Capsaicin , Irritable Bowel Syndrome , Rectum , TRPV Cation Channels , Abdominal Pain/diagnosis , Abdominal Pain/etiology , Adult , Anxiety/etiology , Biopsy , Female , Gene Expression Profiling , Humans , Irritable Bowel Syndrome/genetics , Irritable Bowel Syndrome/pathology , Irritable Bowel Syndrome/physiopathology , Irritable Bowel Syndrome/psychology , Male , Nociception/physiology , Nociceptors/metabolism , Pain Measurement , Pain Threshold/physiology , Pain Threshold/psychology , Rectum/innervation , Rectum/pathology , Sensory System Agents , TRPV Cation Channels/agonists , TRPV Cation Channels/genetics , Up-Regulation
4.
J Physiol ; 591(20): 5125-39, 2013 Oct 15.
Article in English | MEDLINE | ID: mdl-23940384

ABSTRACT

Colonic transit and mucosal integrity are believed to be impaired in obesity. However, a comprehensive assessment of altered colonic functions, inflammatory changes and neuronal signalling of obese animals is missing. In mice, we studied the impact of diet-induced obesity (DIO) on: (i) in vivo colonic transit; (ii) signalling in the myenteric plexus by recording responses to nicotine and 2-methyl-5-hydroxytryptamine (2-methyl-5-HT), together with the expression of tryptophan hydroxylase (TPH) 1 and 2, serotonin reuptake transporter, choline acetyltransferase and the paired box gene 4; and (iii) expression of proinflammatory cytokines, epithelial permeability and density of macrophages, mast cells and enterochromaffin cells. Compared with controls, colon transit and neuronal sensitivity to nicotine and 2-methyl-5-HT were enhanced in DIO mice fed for 12 weeks. This was associated with increased tissue acetylcholine and 5-hydroxytryptamine (5-HT) content, and increased expression of TPH1 and TPH2. In DIO mice, upregulation of proinflammatory cytokines was found in fat tissue, but not in the gut wall. Accordingly, mucosal permeability or integrity was unaltered without signs of immune cell infiltration in the gut wall. Body weight showed positive correlations with adipocyte markers, tissue levels of 5-HT and acetylcholine, and the degree of neuronal sensitization. DIO mice fed for 4 weeks showed no neuronal sensitization, had no signs of gut wall inflammation and showed a smaller increase in leptin, interleukin-6 and monocyte chemoattractant protein 1 expression in fat tissue. DIO is associated with faster colonic transit and impacts on acetylcholine and 5-HT metabolism with enhanced responsiveness of enteric neurones to both mediators after 12 weeks of feeding. Our study demonstrates neuronal plasticity in DIO prior to the development of a pathological histology or abnormal mucosal functions. This questions the common assumption that increased mucosal inflammation and permeability initiate functional disorders in obesity.


Subject(s)
Colon/metabolism , Intestinal Mucosa/metabolism , Myenteric Plexus/metabolism , Neurons/metabolism , Obesity/metabolism , Adipose Tissue/metabolism , Animals , Colon/cytology , Colon/innervation , Colon/physiopathology , Cytokines/genetics , Cytokines/metabolism , Dietary Carbohydrates/adverse effects , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Intestinal Mucosa/physiopathology , Male , Membrane Potentials , Mice , Mice, Inbred C57BL , Myenteric Plexus/cytology , Myenteric Plexus/physiopathology , Neurons/drug effects , Neurons/physiology , Nicotine/pharmacology , Obesity/chemically induced , Obesity/physiopathology , Paired Box Transcription Factors/genetics , Paired Box Transcription Factors/metabolism , Permeability , Serotonin/analogs & derivatives , Serotonin/pharmacology , Serotonin Plasma Membrane Transport Proteins/genetics , Serotonin Plasma Membrane Transport Proteins/metabolism , Tryptophan Hydroxylase/genetics , Tryptophan Hydroxylase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...