Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
J Food Sci ; 88(9): 3773-3785, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37530626

ABSTRACT

Barley (Hordeum vulgare L.) is the traditional malting cereal and is primarily used for beverages, whereas rye (Secale cereale L.) is mainly used in baked goods. Conversely, quinoa (Chenopodium quinoa Willd.) is a gluten-free pseudocereal, rich in starch and high-quality proteins, and can be used in a similar manner to cereals. The sharp bitterness of unprocessed rye and the earthy aroma of native quinoa interfere with the acceptance and development of food products. Malting of barley is known to improve its processing properties and enhance its sensory quality. Therefore, the effect of germination and kilning on malt quality (e.g., viscosity) as well as the volatile composition of barley, rye, and quinoa were monitored. Moreover, temporal changes on the volatile patterns of rye and quinoa at the different stages of malting were compared to barley. In total, 34 volatile compounds were quantified in the three (pseudo)cereals; the alcohol group dominated in all unprocessed samples, in particular, compounds contributing grassy notes (e.g., hexan-1-ol). These grassy compounds remained abundant during germination, whereas kilning promoted the formation of Maillard reaction volatiles associated with malty and roasted notes. The volatile profiles of kilned barley and quinoa were characterized by high concentrations of the malty Strecker aldehyde, 3-methylbutanal. In contrast, green, floral notes imparted by phenylacetaldehyde remained dominant in rye malt. Hierarchical cluster analysis of the volatile data discriminated the samples into the different stages of malting, confirmed the similarities in the volatile patterns of barley and rye, and indicated clear differences to the quinoa samples. PRACTICAL APPLICATION: In this study, the effect of germination and kilning on the chemical and volatile composition of barley, rye, and quinoa was examined. Temporal changes on the volatile patterns of rye and quinoa at different stages of malting were compared to barley. Understanding the differences among the (pseudo)cereals as well as the influence of processing on malt quality and aroma development can help find new food applications.


Subject(s)
Chenopodium quinoa , Hordeum , Hordeum/chemistry , Secale/chemistry , Edible Grain , Alcohols/metabolism
2.
Food Chem ; 427: 136694, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-37418806

ABSTRACT

Barley (Hordeum vulgare L.) remains the traditional malted cereal used for beverages, whereas rye (Secale cereale L.) is mainly used in baked goods. To evaluate the potential of rye malt for beverage production, malt quality indicators and the volatile composition of different rye malts were compared to barley malt. Sensory assessment revealed that pleasant malty and caramel aromas were formed by malting. Subsequently, three complementary isolation techniques and gas chromatography-olfactometry/mass spectrometry (GC-O/MS) were used for volatile analysis. Instrumental analysis detected 50 and 56 odor active volatiles in barley and rye, respectively. In part two, storage and the impact of three malting parameters on volatile formation were examined. Similarities in the malt volatile patterns were detected but the perceived intensity and composition varied. In barley, characteristic malty volatiles were lost during storage and staling compounds were formed. Conversely, nutty pyrazines and caramel furanones remained dominant in rye malts even after storage.


Subject(s)
Hordeum , Edible Grain/chemistry , Hordeum/chemistry , Nuts , Odorants , Secale/chemistry , Seedlings
3.
J Sci Food Agric ; 103(5): 2283-2294, 2023 Mar 30.
Article in English | MEDLINE | ID: mdl-36583269

ABSTRACT

BACKGROUND: Quinoa (Chenopodium quinoa Willd.) is a gluten-free pseudocereal, rich in starch and high-quality proteins. It can be used as a cereal. Recently, a variety of nontraditional food products were developed; however, the sharp bitterness and the earthy aroma of unprocessed quinoa interfered with the acceptance of these products. Malting of cereals is known to improve their processing properties and enhance their sensory quality. To evaluate the acceptance and potential of quinoa malt as a raw material for beverage production, malt quality indicators (e.g., soluble protein) and the aroma profiles of different quinoa malts were compared. RESULTS: Initial sensory assessment of quinoa in its native and malted state identified differences in their aroma profiles and revealed that pleasant nutty and caramel aromas were formed by malting. Subsequently, three complementary isolation techniques and gas chromatography-olfactometry/mass spectrometry (GC-O/MS) were used for volatile analysis. Instrumental analysis detected 34 and 62 odor-active regions in native quinoa and quinoa malt, respectively. In the second part, storage and the impact of three malting parameters on volatile formation were examined. By varying the malting parameters, seven additional odor-active malting byproducts were revealed. CONCLUSION: Three naturally occurring methoxypyrazines were identified as important contributors to the characteristic quinoa aroma. In all fresh quinoa malts a similar number of volatile compounds was perceived but their intensity and composition varied. Higher germination temperature promoted the formation of lipid oxidation products. Fatty smelling compounds and carboxylic acids, formed during storage, were classified as aging indicators of quinoa malt. © 2022 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Subject(s)
Chenopodium quinoa , Volatile Organic Compounds , Odorants/analysis , Chenopodium quinoa/chemistry , Edible Grain/chemistry , Smell , Diet, Gluten-Free , Volatile Organic Compounds/analysis
4.
Foods ; 10(6)2021 Jun 17.
Article in English | MEDLINE | ID: mdl-34204222

ABSTRACT

Sensory, olfactometry (using the sums of odour intensities for each class of compounds) and chemometric analyses were used to evaluate Portuguese wild hops' sensory characteristics and the aroma that those hops impart to dry-hopped beer. CATA analysis and agglomerative hierarchical clustering was applied for the sensory characterization of 15 wild hops of Portuguese genotypes, clustering them in two groups: one more sulphurous, floral, and fruity, and another more earthy, resinous, floral, and non-citrus fruits. Two hops representative of each group were selected for the production of four dry-hopped beers using the same base beer style (Munich Helles). Beers were analysed by quantitative descriptive analyses and quantification of hop-derived key volatile compounds. Multivariate statistical treatment of the data was performed. Results indicate significant differences (p < 0.05) in fruity, resinous, earthy, floral, and sulphurous attributes of hops, but the dry-hopped beers only have a significant increase (p < 0.05) in fruity and spicy notes when compared with non-dry-hopped Munich-style Helles beer. Hop olfactometry explained the sensory perception that the 11 hops not used for brewing (employed as supplementary observations) are placed into the space of the odour-active compounds profile of the four hops selected for brewing. These 11 hop samples have more spiciness than fruitiness potential.

5.
J Agric Food Chem ; 68(7): 2155-2163, 2020 Feb 19.
Article in English | MEDLINE | ID: mdl-31986028

ABSTRACT

Mandarina Bavaria is a "Special Flavor" hop variety, described as fruity, with pronounced mandarin and citrus, combined with traditional hoppy sensations. The relationship between fruity-citrus intensity and the volatile profile of dry-hopped beers was assessed in order to predict the sensory perception of those dry-hopped beers using the content of selected volatile compounds. For this purpose, two base beers (A and B) that presented statistical differences (p < 0.05) in the composition of volatile compounds and on the sensory perception were dry hopped with 3 g/L Mandarina Bavaria hop. Twenty-four volatiles from hop were quantified during 15 days of dry hopping, while the sensory perception was followed by a certified trained panel. The sensory perception of total hoppy content (in a scale from 0 to 5) can be estimated using a PLS equation (Q2 = 0.654): total hoppy = 1.8 + [myrcene (µg/L) × 7.5 × 10-3] + [2-methylbutyl-2-methylpropanoate (µg/L) × 4.2 × 10-3] + [linalool (µg/L) × 7.2 × 10-3] + [α-humulene (µg/L) × 2.3 × 10-3]). Successful models were also obtained to predict citrus (Q2 = 0.745), green fruit (Q2 = 0.598), and sweet fruit (Q2 = 0.626) characteristics of dry-hopped beers.


Subject(s)
Beer/analysis , Flavoring Agents/chemistry , Humulus/chemistry , Volatile Organic Compounds/chemistry , Humans , Odorants/analysis , Taste
6.
Food Chem ; 229: 565-573, 2017 Aug 15.
Article in English | MEDLINE | ID: mdl-28372215

ABSTRACT

This study aims to define the aroma composition and key aroma compounds of barley malt wort beverages produced from fermentation using six lactic acid bacteria (LAB) strains. Gas chromatography mass spectrometry-olfactometry and flame ionization detection was employed; key aroma compounds were determined by means of aroma extract dilution analysis. Fifty-six detected volatile compounds were similar among beverages. However, significant differences were observed in the concentration of individual compounds. Key aroma compounds (flavor dilution (FD) factors ≥16) were ß-damascenone, furaneol, phenylacetic acid, 2-phenylethanol, 4-vinylguaiacol, sotolon, methional, vanillin, acetic acid, nor-furaneol, guaiacol and ethyl 2-methylbutanoate. Furthermore, acetaldehyde had the greatest odor activity value of up to 4266. Sensory analyses revealed large differences in the flavor profile. Beverage from L. plantarum Lp. 758 showed the highest FD factors in key aroma compounds and was correlated to fruity flavors. Therefore, we suggest that suitable LAB strain selection may improve the flavor of malt based beverages.


Subject(s)
Beverages/analysis , Lactic Acid/analysis , Bacteria , Humans , Odorants
7.
J Sci Food Agric ; 91(9): 1598-611, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21445890

ABSTRACT

BACKGROUND: Ají (Capsicum baccatum L. var. pendulum) and rocoto (Capsicum pubescens R. & P.) are two species of chile pepper used for millennia in Andean cuisine. The introduction of these relatively unknown Capsicum species to new markets requires an understanding of their flavour-related compounds. Thus both heat level (Scoville method and gas chromatography/mass spectrometry (GC/MS)) and, particularly, aroma (headspace solid phase microextraction and GC/MS/olfactometry) were studied in different accessions of ají and rocoto and a C. chinense control. RESULTS: Ajíes and rocotos are mildly pungent compared with C. chinense (13-352 vs 1605 mg kg(-1) total capsaicinoids). More than 200 volatiles were detected and marked differences in volatile pattern were found between the studied accessions. The powerful fruity/exotic aroma of the C. chinense control is due to esters such as ethyl 4-methylpentanoate, norcarotenoids such as ß-ionone and the hydrocarbon ectocarpene. In contrast, the Andean peppers had more earthy/vegetable/bell pepper-like aromas. Rocotos also exhibited a distinct additional cucumber odour, while one of the ajíes had a distinctive sweet/fruity note. The aroma of C. pubescens fruits is mainly due to substituted 2-methoxypyrazines and lipoxygenase cleavage products (e.g. 2-nonenals, 2,6-nonadienal). 2-Heptanethiol, 3-isobutyl-2-methoxypyrazine and several phenols (e.g. guaiacol) and terpenoids (e.g. α-pinene, 1,8-cineol, linalool) are the basis of C. baccatum aroma, with some 3-methyl-2-butyl esters contributing to fruity notes. CONCLUSION: In this study the compounds responsible for heat and aroma in the Andean peppers C. baccatum and C. pubescens were identified. The results will be of use to inspire future studies aimed at improving the flavour of these species.


Subject(s)
Capsicum/chemistry , Fruit/chemistry , Odorants/analysis , Taste , Volatile Organic Compounds/analysis , Capsicum/classification , Esters/analysis , Female , Humans , Male , South America , Species Specificity
8.
J Agric Food Chem ; 58(7): 4388-400, 2010 Apr 14.
Article in English | MEDLINE | ID: mdl-20199081

ABSTRACT

Volatile constituents of ripe fruits of 16 Capsicum accessions from the annuum-chinense-frutescens complex, with different aroma impressions and geographical origins, were isolated by headspace-solid phase microextraction (HS-SPME) and analyzed by gas chromatography-olfactometry-mass spectrometry (GC-sniffing port-MS). More than 300 individual compounds could be detected in the studied genotypes; most of them could be identified by comparing mass spectra and retention times with authentic reference substances or literature data. Esters and terpenoids were the main groups, although other minor compounds, such as nitrogen and sulfur compounds, phenol derivatives, norcarotenoids, lipoxygenase derivatives, carbonyls, alcohols, and other hydrocarbons, were also identified. The sniffing test revealed that the diversity of aromas found among the studied cultivars is due to qualitative and quantitative differences of, at least, 23 odor-contributing volatiles (OCVs). C. chinense, and C. frutescens accessions, with fruity/exotic aromas, were characterized by a high contribution of several esters and ionones and a low or nil contribution of green/vegetable OCVs. Different combinations of fruity/exotic and green/vegetable OCVs would explain the range of aroma impressions found among C. annuum accessions. Implications of these findings for breeding and phylogeny studies in Capsicum are also discussed.


Subject(s)
Capsicum/chemistry , Capsicum/genetics , Genetic Variation , Plant Extracts/analysis , Volatile Organic Compounds/analysis , Capsicum/classification , Fruit/chemistry , Fruit/genetics , Genotype , Phylogeny , Solid Phase Microextraction/methods
9.
J Agric Food Chem ; 53(6): 2231-5, 2005 Mar 23.
Article in English | MEDLINE | ID: mdl-15769161

ABSTRACT

Glycosidically bound volatile compounds in different parts (leaves and buds) of Laurus nobilis L. were investigated. After isolation of extracts obtained by Amberlite XAD-2 adsorption and methanol elution, glycosides were analyzed after enzymatic hydrolysis by GC-MS or directly after trifluoroacetyl (TFA) derivatization by GC-MS in EI and NCI mode. In the leaves most of the glycosidically bound volatiles occur as beta-D-glucopyranosides. Among the disaccharides, primeverosides are predominant; smaller amounts of alpha-L-arabinofuranosyl-beta-D-glucopyranosides, rutinosides, and vicianocides could also be identified. Major aglycons comprised benzyl alcohol, some linalool-diols, 2-hydroxy-1,8-cineole and its derivatives such as 2,3-dehydro-1,8-cineole, sobrerols, and menthadien-8-ols. Among the identified nor-carotenoids, 3-oxo-alpha-ionol, the corresponding 7,8-dihydro derivative, and vomifoliol are predominant in leaves. 3-Hydroxy-beta-damascone and 3-hydroxy-7,8-didehydro-beta-ionol, precursors of the sensorially active damascenone, were identified only in the buds.


Subject(s)
Glycosides/metabolism , Laurus/chemistry , Odorants/analysis , Flowers/chemistry , Gas Chromatography-Mass Spectrometry , Plant Extracts/chemistry , Plant Leaves/chemistry , Volatilization
10.
J Agric Food Chem ; 52(18): 5663-9, 2004 Sep 08.
Article in English | MEDLINE | ID: mdl-15373407

ABSTRACT

The volatile constituents of 10 clones (4 parents with different flavors and 6 hybrids from selected crossings among these parents) of pepino fruit (Solanum muricatum) were isolated by simultaneous distillation-extraction and analyzed by gas chromatography-mass spectrometry (GC-MS). Odor-contributing volatiles (OCVs) were detected by GC-olfactometry-MS analyses and included 24 esters (acetates, 3-methylbutanoates, and 3-methylbut-2-enoates), 7 aldehydes (especially hexenals and nonenals), 6 ketones, 9 alcohols, 3 lactones, 2 terpenes, beta-damascenone, and mesifurane. Among these compounds, 17, of which 5 had not been reported previously in pepino, were found to contribute significantly to pepino aroma. OCVs can be assigned to three groups according to their odor quality: fruity fresh (acetates and prenol), green vegetable (C6 and C9 aldehydes), and exotic (lactones, mesifuran, and beta-damascenone). Quantitative and qualitative differences between clones for these compounds are clearly related to differences in their overall flavor impression. The positive value found for the hybrid-midparent regression coefficient for volatile composition indicates that an important fraction of the variation observed is inheritable, which has important implications in breeding for improving aroma. Significant and positive correlations were found between OCVs having common precursors or related pathways.


Subject(s)
Fruit/chemistry , Hybridization, Genetic , Odorants/analysis , Solanum/chemistry , Gas Chromatography-Mass Spectrometry , Solanum/genetics , Species Specificity , Volatilization
11.
J Agric Food Chem ; 52(12): 3911-4, 2004 Jun 16.
Article in English | MEDLINE | ID: mdl-15186116

ABSTRACT

The essential oil from the gum of Pistachio (Pistacia vera L. (Anacardiaceae)) grown in Turkey was obtained by the hydro-distillation method, and its chemical composition was analyzed by GC and GC-MS. Moreover, the antimicrobial activities of the oil against the growth of 13 bacteria and 3 pathogenic yeasts were evaluated using the agar-disk diffusion and minimum inhibitory concentration (MIC) methods. The results showed that the essential oil contained about 89.67% monoterpenes, 8.1% oxygenated monoterpenes and 1.2% diterpenes. alpha-Pinene (75.6%), beta-pinene (9.5%), trans-verbenol (3.0%), camphene (1.4%), trans-pinocarveol (about 1.20%), and limonene (1.0%) were the major components. The antimicrobial results showed that the oil inhibited nine bacteria and all the yeasts studied, and the activities were considerably dependent upon concentration and its bioactive compounds such as carvacrol, camphene, and limonene. Moreover, the essential oil of the gum was found to be more effective yeastcide than Nystatin, synthetic yeastcide. Furthermore, the antibacterial activities of the oil were lower than those of standard antibiotics, ampicillin sodium, and streptomycine sulfate under the conditions studied.


Subject(s)
Anti-Infective Agents/pharmacology , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , Pistacia/chemistry , Bacteria/drug effects , Bicyclic Monoterpenes , Bridged Bicyclo Compounds/analysis , Chromatography, Gas , Gas Chromatography-Mass Spectrometry , Monoterpenes/analysis , Terpenes/analysis , Yeasts/drug effects
12.
J Agric Food Chem ; 52(6): 1601-6, 2004 Mar 24.
Article in English | MEDLINE | ID: mdl-15030218

ABSTRACT

The volatiles of fresh leaves, buds, flowers, and fruits from bay (Laurus nolilis L.) were isolated by solvent extraction and analyzed by capillary gas chromatography-mass spectrometry. Their odor quality was characterized by gas chomatography-olfactometry-mass spectrometry (HRGC-O-MS) and aroma extract dilution analysis (AEDA). In fresh bay leaves 1,8-cineole was the major component, together with alpha-terpinyl acetate, sabinene, alpha-pinene, beta-pinene, beta-elemene, alpha-terpineol, linalool, and eugenol. Besides 1,8-cineole and the pinenes, the main components in flowers were alpha-eudesmol, beta-elemene, and beta-caryophyllene, in fruits (E)-beta-ocimene and biclyclogermacrene, and in buds (E)-beta-ocimene and germacrene D. The aliphatic ocimenes and farnesenes were absent in leaves. By using HRGC-O-MS 21 odor compounds were identified in fresh leaves. Application of AEDA revealed (Z)-3-hexenal (fresh green), 1,8-cineole (eucalyptus), linalool (flowery), eugenol (clove), (E)-isoeugenol (flowery), and an unidentified compound (black pepper) with the highest flavor dilution factors. Differences between buds, flowers, fruits, and leaves with regard to the identified odor compounds are presented.


Subject(s)
Flowers/chemistry , Fruit/chemistry , Laurus/chemistry , Odorants/analysis , Plant Leaves/chemistry , Cyclohexanols/analysis , Eucalyptol , Gas Chromatography-Mass Spectrometry , Monoterpenes/analysis , Seasons , Volatilization
SELECTION OF CITATIONS
SEARCH DETAIL
...