Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Physiol (Oxf) ; 216(3): 330-45, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26303257

ABSTRACT

AIM: Chitinase-3-like protein 1 (CHI3L1) is involved in tissue remodelling and inflammatory processes. Plasma levels are elevated in patients with insulin resistance and T2DM. We recently showed that CHI3L1 and its receptor protease-activated receptor 2 (PAR-2) are expressed in skeletal muscle. Activation of PAR-2 by CHI3L1 protects against TNF-α-induced inflammation and insulin resistance. However, the effect of exercise on CHI3L1 and PAR-2 signalling remains unknown. The aim of this work was to study the impact of exercise on CHI3L1 production and the effect of CHI3L1/PAR-2 signalling on skeletal muscle growth and repair. METHODS: Three human exercise studies were used to measure CHI3L1 plasma levels (n = 32). In addition, muscle and adipose tissue CHI3L1 mRNA expression was measured in response to acute and long-term exercise (n = 24). Primary human skeletal muscle cells were differentiated in vitro, and electrical pulse stimulation was applied. In addition, myoblasts were incubated with CHI3L1 protein and activation of MAP kinase signalling as well as proliferation was measured. RESULTS: Circulating CHI3L1 levels and muscle CHI3L1 mRNA were increased after acute exercise. In addition, CHI3L1 mRNA expression as well as CHI3L1 secretion was enhanced in electrically stimulated cultured myotubes. Incubation of cultured human myoblasts with CHI3L1 protein leads to a strong activation of p44/42, p38 MAPK and Akt as well as enhanced myoblast proliferation. CONCLUSION: Our findings suggest that CHI3L1 is induced by acute exercise and that CHI3L1/PAR-2 signalling activates myocyte proliferation, which is important for restructuring of skeletal muscle in the response to exercise training.


Subject(s)
Cell Proliferation/physiology , Chitinase-3-Like Protein 1/metabolism , Exercise/physiology , Muscle Cells/metabolism , Adult , Aged , Humans , Male , Middle Aged , Muscle, Skeletal/metabolism , RNA, Messenger/analysis , Real-Time Polymerase Chain Reaction , Signal Transduction/physiology , Young Adult
2.
Acta Physiol (Oxf) ; 200(1): 65-74, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20180783

ABSTRACT

AIM: Caffeine and theophylline inhibit phosphatidylinositol 3-kinase (PI3-kinase) activity and insulin-stimulated protein kinase B (PKB) phosphorylation. Insulin-stimulated glucose uptake involves PI3-kinase/PKB, and the aim of the present study was to test the hypothesis that caffeine and theophylline inhibit insulin-stimulated glucose uptake in skeletal muscles. METHODS: Rat epitrochlearis muscles and soleus strips were incubated with insulin and different concentrations of caffeine and theophylline for measurement of glucose uptake, force development and PKB phosphorylation. The effect of caffeine was also investigated in muscles stimulated electrically. RESULTS: Caffeine and theophylline completely blocked insulin-stimulated glucose uptake in both soleus and epitrochlearis muscles at 10 mm. Furthermore, insulin-stimulated PKB Ser(473) and Thr(308) and GSK-3beta Ser(9) phosphorylation were blocked by caffeine and theophylline. Caffeine reduced and theophylline blocked insulin-stimulated glycogen synthase activation. Caffeine stimulates Ca(2+) release and force development increased rapidly to 10-20% of maximal tetanic contraction. Dantrolene (25 microm), a well-known inhibitor of Ca(2+)-release, prevented caffeine-induced force development, but caffeine inhibited insulin-stimulated glucose uptake in the presence of dantrolene. Contraction, like insulin, stimulates glucose uptake via translocation of glucose transporter-4 (GLUT4). Caffeine and theophylline reduced contraction-stimulated glucose uptake by about 50%, whereas contraction-stimulated glycogen breakdown was normal. CONCLUSION: Caffeine and theophylline block insulin-stimulated glucose uptake independently of Ca(2+) release, and the likely mechanism is via blockade of insulin-stimulated PI3-kinase/PKB activation. Caffeine and theophylline also reduced contraction-stimulated glucose uptake, which occurs independently of PI3-kinase/PKB, and we hypothesize that caffeine and theophylline also inhibit glucose uptake in skeletal muscles via an additional and hitherto unknown molecule involved in GLUT4 translocation.


Subject(s)
Caffeine/pharmacology , Glucose/metabolism , Insulin/metabolism , Muscle, Skeletal/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Theophylline/pharmacology , Animals , Dantrolene/pharmacology , Dose-Response Relationship, Drug , Electric Stimulation , Glucose Transporter Type 4/metabolism , Glycogen Synthase Kinase 3/metabolism , Glycogen Synthase Kinase 3 beta , Male , Muscle Contraction/drug effects , Muscle, Skeletal/enzymology , Phosphatidylinositol 3-Kinases/metabolism , Phosphorylation , Protein Transport , Rats , Rats, Wistar , Serine , Threonine , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...