Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Nanoscale Adv ; 1(7): 2663-2673, 2019 Jul 10.
Article in English | MEDLINE | ID: mdl-36132738

ABSTRACT

Ternary metal tin phosphides are promising candidates for electrochemical or catalytic applications. Nevertheless, their synthesis, neither as bulk nor nanomaterials is well investigated in the literature. Here, we describe a general synthetic strategy to convert bimetallic M-Sn (M = Ni, Co, and Fe) nanoparticles to ternary metal phosphides by decomposition of tributylphosphine at 300 °C. At high phosphorus concentrations, Ni3Sn4 nanoparticles convert to hybrid structured Ni2SnP and ß-Sn. The CoSn2 and FeSn2 nanoparticles undergo a phosphorization, too and form hybrid nanocrystals reported here for the first time, containing ternary or binary phosphides. We identified the crystal structure of the nanoparticles via XRD and HRTEM measurements using the diffraction data given for Ni2SnP in literature. We were able to locate the Ni2SnP and ß-Sn crystal structure within the nanoparticles to demonstrate the phase composition of the nanoparticles. By transferring the synthesis to cobalt and iron, we obtained nanoparticles exhibiting similar hybrid structures and ternary element compositions for Co-Sn-P and binary Fe-P and FeSn2 compositions. In the last step, we used the given information to propose a conversion mechanism from the binary M-Sn nanoparticles through phosphorization.

2.
ACS Omega ; 3(12): 16924-16933, 2018 Dec 31.
Article in English | MEDLINE | ID: mdl-31458316

ABSTRACT

Synthesis of most tin-based bimetallic nanoparticles is a challenging task because of the differences in the redox potential and the melting point between both components. This article presents a co-reduction synthesis of monoclinic Ni3Sn4 nanoparticles. Varying time and temperature gives the possibility to control the size of the nanoparticles in the range of 4-12 nm. The products were characterized by X-ray diffraction, high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, and energy-dispersive X-ray spectroscopy measurements. Although the synthesis was conducted entirely oxygen free, the postsynthetic treatment undertaken under air leads to the formation of an amorphous oxide shell. The oxide shell consists of an outer tin-rich region and a nickel-rich region at the interface to the metallic Ni3Sn4 core. On the basis of the investigation of the particles at different stages of the synthesis, we propose a growth mechanism for the Ni3Sn4 nanocrystals. These results can be a guidepost for the synthesis of other tin-based bimetallic nanoparticles.

3.
Phys Chem Chem Phys ; 17(42): 28186-92, 2015 Nov 14.
Article in English | MEDLINE | ID: mdl-25820837

ABSTRACT

Bimetallic PtSn nanoparticles (NPs) of well-defined size and metal composition were prepared by means of colloidal methods. The mean particle diameter was about 2 nm for all samples irrespective of the Pt/Sn-ratio, which enables a systematic study of the influence of the composition on the catalytic properties while excluding particle size effects. The hydrogenation of crotonaldehyde was investigated as a reaction for which chemoselectivity is known to be a challenging task. Already very low atomic Sn contents (≈10%) were found to lead to a significantly improved activity which may be attributed to an electronic effect of Sn on Pt. For further increasing tin contents the activity decreased gradually. This trend was accompanied by a steady increase in selectivity towards the desired product (crotylalcohol). The results show that the highest crotylalcohol time yields can be obtained by using catalysts with an atomic Sn content of approximately 23%. In contrast, maximum crotylalcohol selectivities are achieved by using catalysts with a high tin content (>50%).


Subject(s)
Aldehydes/chemistry , Colloids/chemistry , Metal Nanoparticles/chemistry , Platinum/chemistry , Tin/analysis , Tin/chemistry , Catalysis , Hydrogen/chemistry
4.
Beilstein J Nanotechnol ; 6: 47-59, 2015.
Article in English | MEDLINE | ID: mdl-25671151

ABSTRACT

Manganese oxides are one of the most important groups of materials in energy storage science. In order to fully leverage their application potential, precise control of their properties such as particle size, surface area and Mn (x) (+) oxidation state is required. Here, Mn3O4 and Mn5O8 nanoparticles as well as mesoporous α-Mn2O3 particles were synthesized by calcination of Mn(II) glycolate nanoparticles obtained through an economical route based on a polyol synthesis. The preparation of the different manganese oxides via one route facilitates assigning actual structure-property relationships. The oxidation process related to the different MnO x species was observed by in situ X-ray diffraction (XRD) measurements showing time- and temperature-dependent phase transformations occurring during oxidation of the Mn(II) glycolate precursor to α-Mn2O3 via Mn3O4 and Mn5O8 in O2 atmosphere. Detailed structural and morphological investigations using transmission electron microscopy (TEM) and powder XRD revealed the dependence of the lattice constants and particle sizes of the MnO x species on the calcination temperature and the presence of an oxidizing or neutral atmosphere. Furthermore, to demonstrate the application potential of the synthesized MnO x species, we studied their catalytic activity for the oxygen reduction reaction in aprotic media. Linear sweep voltammetry revealed the best performance for the mesoporous α-Mn2O3 species.

5.
ACS Appl Mater Interfaces ; 6(22): 20535-43, 2014 Nov 26.
Article in English | MEDLINE | ID: mdl-25347208

ABSTRACT

CuInS2 nanorods and networks are interesting candidates for applications requiring efficient charge transport, such as solar energy conversion, because of the increased electrical conductivity in elongated or interconnected nanocrystals, compared to isolated, quasi-spherical ones. However, little is known about the growth mechanisms involved in the formation of this kind of nanostructures, yet. Here, CuInS2 nanorods and networks were synthesized through a facile low-cost and phosphine-free method. Copper and indium sources were added together in the presence of oleylamine and oleic acid. Changing the amount of oleic acid present in the reaction solution influenced the reactivity of the monomers, and consequently, the size of copper sulfide seeds formed in situ after the injection of tert-dodecanethiol, serving as the source of sulfur. Two different growth mechanisms of CuInS2 nanorods were observed, depending on the size of the copper sulfide seeds. Larger seeds (8 nm), which were generated with relatively small amounts of oleic acid, resulted in the formation of hybrid copper sulfide-copper indium disulfide nanocrystals as intermediates in the growth process of the nanorods, while smaller seeds (4 nm) obtained with relatively large amounts of oleic acid were gradually converted to copper indium sulfide nanorods. At longer reaction times, these nanorods formed network structures. The reaction between oleylamine and oleic acid at high temperature turned out to be the crucial factor to induce the attachment of nanorods to multipods and networks.

6.
Nanotechnology ; 25(35): 355401, 2014 Sep 05.
Article in English | MEDLINE | ID: mdl-25116171

ABSTRACT

Tin is able to lithiate and delithiate reversibly with a high theoretical specific capacity, which makes it a promising candidate to supersede graphite as the state-of-the-art negative electrode material in lithium ion battery technology. Nevertheless, it still suffers from poor cycling stability and high irreversible capacities. In this contribution, we show the synthesis of three different nano-sized core/shell-type particles with crystalline tin cores and different amorphous surface shells consisting of SnOx and organic polymers. The spherical size and the surface shell can be tailored by adjusting the synthesis temperature and the polymer reagents in the synthesis, respectively. We determine the influence of the surface modifications with respect to the electrochemical performance and characterize the morphology, structure, and thermal properties of the nano-sized tin particles by means of high-resolution transmission electron microscopy, x-ray diffraction, and thermogravimetric analysis. The electrochemical performance is investigated by constant current charge/discharge cycling as well as cyclic voltammetry.

7.
ACS Appl Mater Interfaces ; 5(23): 12221-37, 2013 Dec 11.
Article in English | MEDLINE | ID: mdl-24187935

ABSTRACT

Semiconductor nanocrystals possess size-dependent properties, which make them interesting candidates for a variety of applications, e.g., in solar energy conversion, lighting, display technology, or biolabelling. However, many of the best studied nanocrystalline materials contain toxic heavy metals; this seriously limits their potential for widespread application. One of the possible less toxic alternatives to cadmium- or lead-containing semiconductors is copper indium disulfide (CIS), a direct semiconductor with a bandgap in the bulk of 1.45 eV and a Bohr exciton radius of 4.1 nm. This Review gives an overview of the methods developed during the last years to synthesize CIS nanocrystals and summarizes the possibilities to influence their shape, composition and crystallographic structure. Also the potential of the application of CIS nanocrystals in biolabellling, photocatalysis, solar energy conversion, and light-emitting devices is discussed.

8.
Chemistry ; 19(30): 9746-53, 2013 Jul 22.
Article in English | MEDLINE | ID: mdl-23788400

ABSTRACT

Ternary semiconductor nanocrystals, such as CuInSe2 , are of high interest for photovoltaic application due to their relatively low toxicity and unique properties. During the last decades great success has been achieved in the colloidal synthesis of binary nanoparticles, but for ternary compounds this research is still in an early stage of development. These materials are a challenge for synthetic chemistry, because the interaction between the three components (copper, indium, and selenium) plays a major role for the production of high quality material. The purpose of this Minireview is to provide a summary of the achievements in colloidal synthesis of CuInSe2 nanoparticles--in particular, details of reaction mechanism and its characterization possibilities, which might be useful also for the colloidal synthesis of other multicomponent systems.

9.
Phys Chem Chem Phys ; 14(33): 11706-14, 2012 Sep 07.
Article in English | MEDLINE | ID: mdl-22829060

ABSTRACT

Nearly monodisperse lead chalcogenide (PbE, E = S, Se, or Te) semiconductor quantum dots of controllable shape have been produced via a novel synthesis which includes the occurrence of in situ formed Pb(0) particles. Tunable size and shape are achieved through appropriate choice of the precursor type and the stabilizer. As precursor, we use, on the one hand, lead oxide or lead acetate, on the other hand, tellurium, selenium, or sulfur powder dissolved in trioctylphosphine (TOP), tributylphosphine (TBP), or 1-octadecene (ODE). Oleic acid (OA) and various amines, as well as TOP and TBP are used for stabilization. With respect to possible application in hybrid solar cells, the surface of as-synthesized spherical PbSe nanocrystals was investigated by nuclear magnetic resonance (NMR), mass spectrometry (MS) and thermogravimetric analysis (TGA). As an important result, it was found that the surface is not mostly covered by oleic acid after synthesis, but by a phosphorus compound. We also applied a ligand exchange procedure with hexylamine and found evidence for the successful attachment of hexylamine to the nanocrystal surface. Additionally, charge separation between these nanoparticles and the conjugated polymer poly(3-hexylthiophene) (P3HT) is studied by electron spin resonance and photoinduced absorption spectroscopy. The spectra obtained suggest that charges can be produced successfully by photoinduced charge transfer.

10.
ACS Nano ; 6(7): 5889-96, 2012 Jul 24.
Article in English | MEDLINE | ID: mdl-22712468

ABSTRACT

Many physical and chemical properties of semiconducting nanocrystals strongly depend on their spatial dimensions and crystallographic structure. For these reasons, achieving a high degree of size and shape control plays an important role with respect to their application potential. In this report we present a facile route for the direct colloidal synthesis of copper(I) sulfide nanorods. A high reactivity of the starting materials is essential to obtain nanorods. We achieve this by using a thiol that thermally decomposes easily and serves as the sulfur source. The thiol is mixed in a noncoordinating solvent, which acts as the reaction medium. Adjustment of the nucleation temperature makes it possible to tailor uniform nanorods with lengths from 10 to 100 nm. The nanorods are single crystalline, and the growth direction is shown to occur along the a-axis of djurleite. The growth process and character of the nanorods were investigated through UV-vis and NIR absorption spectroscopy, transmission electron microscopy, and powder X-ray diffraction measurements.

11.
Langmuir ; 27(17): 11052-61, 2011 Sep 06.
Article in English | MEDLINE | ID: mdl-21761930

ABSTRACT

PtSn bimetallic nanoparticles with different particle sizes (1-9 nm), metal compositions (Sn content of 10-80 mol %), and organic capping agents (e.g., amine, thiol, carboxylic acid and polymer) were synthesized by colloidal chemistry methods. Transmission electron microscopy (TEM) measurements show that, depending on the particle size, the as-prepared bimetallic nanocrystals have quasi-spherical or faceted shapes. Energy-dispersive X-ray (EDX) analyses indicate that for all samples the signals of both Pt and Sn can be detected from single nanoparticles, confirming that the products are actually bimetallic but not only a physical mixture of pure Pt and Sn metal nanoparticles. X-ray diffraction (XRD) measurements were also conducted on the bimetallic particle systems. When compared with the diffraction patterns of monometallic Pt nanoparticles, the bimetallic samples show distinct shifts of the Bragg reflections to lower degrees, which gives clear proof of the alloying of Pt with Sn. However, a quantitative analysis of the lattice parameter shifts indicates that only part of the Sn atoms are incorporated into the alloy nanocrystals. This is consistent with X-ray photoelectron spectroscopy (XPS) measurements that reveal the segregation of Sn at the surfaces of the nanocrystals. Moreover, short PtSn bimetallic nanowires were synthesized by a seed-mediated growth method with amine-capped bimetallic particles as precursors. The resulting nanowires have an average width of 2.3 nm and lengths ranging from 5 to 20 nm.

12.
Nanoscale Res Lett ; 6(1): 79, 2011 Jan 12.
Article in English | MEDLINE | ID: mdl-21711581

ABSTRACT

Resonant Raman study reveals the noticeable effect of the ligand exchange on the nanocrystal (NC) surface onto the phonon spectra of colloidal CdTe NC of different size and composition. The oleic acid ligand exchange for pyridine ones was found to change noticeably the position and width of the longitudinal optical (LO) phonon mode, as well as its intensity ratio to overtones. The broad shoulder above the LO peak frequency was enhanced and sharpened after pyridine treatment, as well as with decreasing NC size. The low-frequency mode around 100 cm-1 which is commonly related with the disorder-activated acoustical phonons appears in smaller NCs but is not enhanced after pyridine treatment. Surprisingly, the feature at low-frequency shoulder of the LO peak, commonly assigned to the surface optical phonon mode, was not sensitive to ligand exchange and concomitant close packing of the NCs. An increased structural disorder on the NC surface, strain and modified electron-phonon coupling is discussed as the possible reason of the observed changes in the phonon spectrum of ligand-exchanged CdTe NCs.PACS: 63.20.-e, 78.30.-j, 78.67.-n, 78.67.Bf.

13.
J Am Chem Soc ; 132(45): 15976-86, 2010 Nov 17.
Article in English | MEDLINE | ID: mdl-20958030

ABSTRACT

Cu(2)S-CuInS(2) hybrid nanostructures as well as pure CuInS(2) (CIS) nanocrystals were synthesized by methods of colloidal chemistry. The structure, the shape and the composition of these nanomaterials were investigated with transmission electron microscopy (TEM), powder X-ray diffraction (XRD) and energy dispersive X-ray analysis (EDX). By changing the reaction conditions, CuInS(2) nanorods with different aspect ratio, dimeric nanorods as well as hexagonal discs and P-shaped particles could be synthesized. Under our reaction conditions, CIS nanoparticles crystallize in the hexagonal wurtzite structure, as confirmed by Rietveld analysis of the X-ray diffraction patterns. The formation of Cu(2)S-CuInS(2) hybrid nanostructures turned out to be an essential intermediate step in the growth of CIS nanoparticles, the copper sulphide part of the hybrid material playing an important role in the shape control of the CIS nanocrystals. By a treatment of Cu(2)S-CuInS(2) with 1,10-phenanthroline, Cu(2)S parts of the hybrid nanostructures could be removed, and pure CIS nanoparticles with shapes not accessible with other methods can be obtained. Our synthetic procedure turned out to be suitable to synthesize also other compounds, like CuInS(2)-ZnS alloys, and to modify, in this way, the optical properties of the nanocrystals.

SELECTION OF CITATIONS
SEARCH DETAIL
...