Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Sensors (Basel) ; 23(21)2023 Nov 04.
Article in English | MEDLINE | ID: mdl-37960668

ABSTRACT

The aim of this study was to evaluate the ability of a droplet collar accessory attached to a portable near-infrared (NIR) instrument to characterize the artificial contamination of methanol in commercial whisky samples. Unadulterated samples (n = 12) were purchased from local bottle shops where adulterated samples were created by adding methanol (99% pure methanol) at six levels (0.5%, 1%, 2%, 3%, 4% and 5% v/v) to the commercial whisky samples (controls). Samples were analyzed using a drop collar accessory attached to a MicroNIR Onsite instrument (900-1650 nm). Partial least squares (PLS) cross-validation statistics obtained for the prediction of all levels of methanol (from 0 to 5%) addition were considered adequate when the whole adulteration range was used, coefficient of determination in cross-validation (R2cv: 0.95) and standard error in cross of validation (SECV: 0.35% v/v). The cross-validation statistics were R2cv: 0.97, SECV: 0.28% v/v after the 0.5% and 1% v/v methanol addition was removed. These results showed the ability of using a new sample presentation attachment to a portable NIR instrument to analyze the adulteration of whisky with methanol. However, the low levels of methanol adulteration (0.5 and 1%) were not well predicted using the NIR method evaluated.


Subject(s)
Methanol , Spectroscopy, Near-Infrared , Spectroscopy, Near-Infrared/methods , Food Contamination/analysis , Least-Squares Analysis
2.
Sex Transm Dis ; 50(7): 395-401, 2023 07 01.
Article in English | MEDLINE | ID: mdl-36735907

ABSTRACT

BACKGROUND: Tongue kissing is a poorly studied risk factor for sexually transmitted infections (STIs). We undertook the first systematic review to assess whether kissing is a risk factor for gonorrhea or chlamydia of the oropharynx. METHODS: Online databases (MEDLINE, EMBASE, CINAHL, Web of Science, Cochrane) and reference lists were searched until September 30, 2022. The eligibility criteria for studies included: any peer-reviewed study design in the English language; gonorrhea or chlamydia diagnosed by nucleic acid amplification test, or an infection self-reported by a patient; tongue kissing or its equivalent measured as an exposure. Studies were appraised using a quality scoring tool and qualitatively synthesized. RESULTS: Of 8248 studies screened, 6 were eligible for review. All were conducted among men who have sex with men in Australia, including 3 prospective cohort studies, 2 cross-sectional studies, and 1 age-matched case-control study. In summary, all 5 studies examining gonorrhea found an unadjusted association between kissing and oropharyngeal gonorrhea. Two cross-sectional studies found that tongue kissing was an independent risk factor for oropharyngeal gonorrhea after adjusting for other confounders, such as participant demographic characteristics and other sexual practices. In contrast, a single eligible prospective cohort study found no association between kissing and oropharyngeal chlamydia. CONCLUSIONS: This systematic review summarized the existing evidence that suggests that tongue kissing may be a risk factor for oropharyngeal gonorrhea but not chlamydia. Reinforcing the message that oropharyngeal gonorrhea could be transmitted through kissing may inform the development of novel approaches to prevent and treat gonorrhea.


Subject(s)
Chlamydia Infections , Chlamydia , Gonorrhea , Sexual and Gender Minorities , Sexually Transmitted Diseases , Male , Humans , Gonorrhea/diagnosis , Homosexuality, Male , Prospective Studies , Chlamydia Infections/epidemiology , Chlamydia Infections/diagnosis , Case-Control Studies , Cross-Sectional Studies , Risk Factors
3.
Chemosphere ; 270: 129143, 2021 May.
Article in English | MEDLINE | ID: mdl-33429237

ABSTRACT

Biosolids samples were collected from 19 Australian WWTPs during 2018 that cover a range of catchment types (urban, rural, industrial waste discharges) and treatment technologies. Samples were analysed for 44 PFAS using isotope dilution and alkaline extraction coupled with quantification with LC-MS/MS. The Σ44PFAS mean concentration was 260 ng/g dry weight (dw) and ranged between 4.2 and 910 ng/g dw. The dominant compound class detected were the di-substituted phosphate esters (Σ3PAPs mean 140 ng/g dw; range ND - 730 ng/g dw) which contributed 45% of the total mean Σ44PFAS mass, followed by perfluoroalkyl carboxylic acids (Σ11PFCAs mean 39 ng/g dw; range 2.3-120 ng/g dw) contributing 17%, and the perfluoroalkyl sulfonates (Σ8PFSAs mean 28 ng/g dw; range 0.9-220 ng/g) which contributed 16%. Using the population data supplied by the participating WWTPs, the mean annual estimated biosolids-associated PFAS contribution is 6 mg per person per year and ranged between 0.6 mg and 15 mg. A similar population normalised concentration regardless of WWTP, region or capacity suggests that the domestic environment provides the baseline PFAS loading. Statistically significant higher Σ44PFAS and PFOS concentrations were observed at urban locations. A weak correlation was observed between annual mass of PFAS associated with each individual WWTP and their percentage industrial waste contribution. This may be important for elevated PFAS concentrations observed in WWTPs with higher industrial waste inputs and requires further research.


Subject(s)
Alkanesulfonic Acids , Fluorocarbons , Water Pollutants, Chemical , Alkanesulfonic Acids/analysis , Australia , Biosolids , Chromatography, Liquid , Environmental Monitoring , Fluorocarbons/analysis , Humans , Tandem Mass Spectrometry , Water Pollutants, Chemical/analysis
4.
Chemosphere ; 260: 127601, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32688318

ABSTRACT

This study evaluates the prevalence of eight priority polybrominated diphenyl ethers (PBDEs; -28, -47, -99, -100, -153, -154, -183 and -209) and six novel brominated flame retardants (NBFRs; pentabromotoluene (PBT), pentabromoethylbenzene (PBEB), hexabromobenzene (HBB), 2-ethylhexyl-2,3,4,5-tetrabromobenzoate (EH-TBB), 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE) and decabromodiphenyl ethane (DBDPE)) in biosolids samples from 15 wastewater treatment plants (WWTPs) in Western Australia. Analytes were extracted using selective pressurized liquid extraction (S-PLE) and quantified by gas chromatography coupled to tandem mass spectrometry (GC-MS/MS) operated in electron impact (EI) ionization mode. ∑8PBDE levels in biosolids ranged from 11 to 18,000 µg/kg dw with a median concentration of 1800 µg/kg dw. BDE-209 was the most prevalent congener constituting a median of 98% of ∑8PBDE concentrations in samples with BDE-99, -47 and -100 each typically contributing less than 3% to total levels. NBFRs were detected in 71% of samples with ∑6NBFR levels ranging between ND-1100 µg/kg dw (median; 600 µg/kg dw). Levels of DBDPE greatly exceeded those of all other NBFRs, while the next most prevalent compounds were EH-TBB and HBB. Australia produced approximately 327,000 dry tonnes of biosolids in 2017, of which approximately 75% was beneficially utilized on farmland as a fertilizer. Based on these results, an estimated 440 kg of BDE-209 and 150 kg of DBDPE are applied to agricultural land via biosolids applications annually in Australia. This study provides the first account of NBFR concentrations in Australian biosolids.


Subject(s)
Environmental Monitoring/methods , Flame Retardants/analysis , Waste Disposal, Fluid , Agriculture , Australia , Biosolids , Bromobenzenes , Gas Chromatography-Mass Spectrometry , Halogenated Diphenyl Ethers/analysis , Halogenation , Tandem Mass Spectrometry , Wastewater/analysis , Western Australia
5.
Environ Toxicol Chem ; 39(3): 595-603, 2020 03.
Article in English | MEDLINE | ID: mdl-31751491

ABSTRACT

Per- and poly-fluoroalkyl substances (PFAS) are ubiquitously distributed throughout aquatic environments and can bioaccumulate in organisms. We examined dietary uptake and depuration of a mixture of 3 PFAS: perfluorooctanoic acid (PFOA; C8 HF15 O2 ), perfluorooctane sulfonate (PFOS; C8 HF17 SO3 ), and hexafluoropropylene oxide dimer acid (HPFO-DA; C6 HF11 O3 ; trade name GenX). Benthic fish (blue spot gobies, Pseudogobius sp.) were fed contaminated food (nominal dose 500 ng g-1 ) daily for a 21-d uptake period, followed by a 42-d depuration period. The compounds PFOA, linear-PFOS (linear PFOS), and total PFOS (sum of linear and branched PFOS) were detected in freeze-dried fish, whereas GenX was not, indicating either a lack of uptake or rapid elimination (<24 h). Depuration rates (d-1 ) were 0.150 (PFOA), 0.045 (linear-PFOS), and 0.042 (linear+branched-PFOS) with corresponding biological half-lives of 5.9, 15, and 16 d, respectively. The PFOS isomers were eliminated differently, resulting in enrichment of linear-PFOS (70-90%) throughout the depuration period. The present study is the first reported study of GenX dietary bioaccumulation potential in fish, and the first dietary study to investigate uptake and depuration of multiple PFASs simultaneously, allowing us to determine that whereas PFOA and PFOS accumulated as expected, GenX, administered in the same way, did not appear to bioaccumulate. Environ Toxicol Chem 2020;39:595-603. © 2019 SETAC.


Subject(s)
Alkanesulfonic Acids/metabolism , Bioaccumulation , Caprylates/metabolism , Fishes/metabolism , Fluorocarbons/metabolism , Water Pollutants, Chemical/metabolism , Animals , Kinetics
6.
Molecules ; 24(18)2019 Sep 19.
Article in English | MEDLINE | ID: mdl-31546774

ABSTRACT

Petroleum hydrocarbons represent the most frequent environmental contaminant. The introduction of petroleum hydrocarbons into a pristine environment immediately changes the nature of that environment, resulting in reduced ecosystem functionality. Natural attenuation represents the single, most important biological process which removes petroleum hydrocarbons from the environment. It is a process where microorganisms present at the site degrade the organic contaminants without the input of external bioremediation enhancers (i.e., electron donors, electron acceptors, other microorganisms or nutrients). So successful is this natural attenuation process that in environmental biotechnology, bioremediation has developed steadily over the past 50 years based on this natural biodegradation process. Bioremediation is recognized as the most environmentally friendly remediation approach for the removal of petroleum hydrocarbons from an environment as it does not require intensive chemical, mechanical, and costly interventions. However, it is under-utilized as a commercial remediation strategy due to incomplete hydrocarbon catabolism and lengthy remediation times when compared with rival technologies. This review aims to describe the fate of petroleum hydrocarbons in the environment and discuss their interactions with abiotic and biotic components of the environment under both aerobic and anaerobic conditions. Furthermore, the mechanisms for dealing with petroleum hydrocarbon contamination in the environment will be examined. When petroleum hydrocarbons contaminate land, they start to interact with its surrounding, including physical (dispersion), physiochemical (evaporation, dissolution, sorption), chemical (photo-oxidation, auto-oxidation), and biological (plant and microbial catabolism of hydrocarbons) interactions. As microorganism (including bacteria and fungi) play an important role in the degradation of petroleum hydrocarbons, investigations into the microbial communities within contaminated soils is essential for any bioremediation project. This review highlights the fate of petroleum hydrocarbons in tertial environments, as well as the contributions of different microbial consortia for optimum petroleum hydrocarbon bioremediation potential. The impact of high-throughput metagenomic sequencing in determining the underlying degradation mechanisms is also discussed. This knowledge will aid the development of more efficient, cost-effective commercial bioremediation technologies.


Subject(s)
Ecosystem , Hydrocarbons/analysis , Microbiota , Petroleum Pollution/analysis , Petroleum/analysis , Biodegradation, Environmental , Hydrocarbons/toxicity , Microbiota/drug effects
7.
Heliyon ; 5(8): e02316, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31485522

ABSTRACT

Quantifying the emissions of per- and polyfluoroalkyl substances (PFAS) from Australian wastewater treatment plants (WWTP) is of high importance due to potential impacts on receiving aquatic ecosystems. The new Australian PFAS National Environmental Management Plan recommends 0.23 ng L-1 of PFOS as the guideline value for 99% species protection for aquatic systems. In this study, 21 PFAS from four classes were measured in WWTP solid and aqueous samples from 19 Australian WWTPs. The mean ∑21PFAS was 110 ng L-1 (median: 80 ng L-1; range: 9.3-520 ng L-1) in aqueous samples and 34 ng g-1 dw (median: 12 ng g-1 dw; range: 2.0-130 ng g-1 dw) in WWTP solids. Similar to WWTPs worldwide, perfluorocarboxylic acids were generally higher in effluent, compared to influent. Partitioning to solids within WWTPs increased with increasing fluoroalkyl chain length from 0.05 to 1.22 log units. Many PFAS were highly correlated, and PCA analysis showed strong associations between two groups: odd chained PFCAs, PFHxA and PFSAs; and 6:2 FTS with daily inflow volume and the proportion of trade waste accepted by WWTPs (as % of typical dry inflow). The compounds PFPeA, PFHxA, PFHpA, PFOA, PFNA, and PFDA increased significantly between influent and final effluent. The compounds 6:2 FTS and 8:2 FTS were quantified and F-53B detected and reported in Australian WWTP matrices. The compound 6:2 FTS was an important contributor to PFAS emissions in the studied Australian WWTPs, supporting the need for future research on its sources (including precursor degradation), environmental fate and impact in Australian aquatic environments receiving WWTP effluent.

SELECTION OF CITATIONS
SEARCH DETAIL
...