Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Clin Invest ; 131(22)2021 11 15.
Article in English | MEDLINE | ID: mdl-34779418

ABSTRACT

Metabolic pathways regulate immune responses and disrupted metabolism leads to immune dysfunction and disease. Coronavirus disease 2019 (COVID-19) is driven by imbalanced immune responses, yet the role of immunometabolism in COVID-19 pathogenesis remains unclear. By investigating 87 patients with confirmed SARS-CoV-2 infection, 6 critically ill non-COVID-19 patients, and 47 uninfected controls, we found an immunometabolic dysregulation in patients with progressed COVID-19. Specifically, T cells, monocytes, and granulocytes exhibited increased mitochondrial mass, yet only T cells accumulated intracellular reactive oxygen species (ROS), were metabolically quiescent, and showed a disrupted mitochondrial architecture. During recovery, T cell ROS decreased to match the uninfected controls. Transcriptionally, T cells from severe/critical COVID-19 patients showed an induction of ROS-responsive genes as well as genes related to mitochondrial function and the basigin network. Basigin (CD147) ligands cyclophilin A and the SARS-CoV-2 spike protein triggered ROS production in T cells in vitro. In line with this, only PCR-positive patients showed increased ROS levels. Dexamethasone treatment resulted in a downregulation of ROS in vitro and T cells from dexamethasone-treated patients exhibited low ROS and basigin levels. This was reflected by changes in the transcriptional landscape. Our findings provide evidence of an immunometabolic dysregulation in COVID-19 that can be mitigated by dexamethasone treatment.


Subject(s)
Basigin/physiology , COVID-19/immunology , Dexamethasone/pharmacology , SARS-CoV-2 , T-Lymphocytes/metabolism , Adult , COVID-19/metabolism , Cyclophilin A/physiology , Fatty Acids/metabolism , Female , Humans , Male , Middle Aged , Mitochondria/pathology , Reactive Oxygen Species/metabolism
2.
ChemMedChem ; 16(23): 3600-3614, 2021 12 06.
Article in English | MEDLINE | ID: mdl-34665510

ABSTRACT

Leishmaniasis and Chagas diseases are two of the most important parasitic diseases in the world. Both belong to the category of Neglected Tropical Diseases, and they cannot be prevented by vaccination. Their treatments are founded in outdated drugs that possess many pernicious side-effects and they're not easy to administer. With the aim of discovering new compounds that could serve as anti-trypanosomal drugs, an antiparasitic study of a synthetic compound family has been conducted. A series of new 1,4-bis(alkylamino)- and 1-alkylamino-4-chloroazine and benzoazine derivatives 1-4 containing imidazole rings have been synthesized and identified. Their structures showed a possible interest based on previous work. Their in vitro anti-Leishmania infantum, anti-L. braziliensis, anti-L. donovani and anti-T. cruzi activity were tested, as well as the inhibition of Fe-SOD enzymes. It was found that some of them exhibited quite relevant values indicative of being worthy of future more detailed studies, as most of them showed activity to more than only one parasite species, especially compound 3 c was active for the three studied Leishmania species and also for T. cruzi, which is a very interesting trait as it covers a wide spectrum.


Subject(s)
Imidazoles/pharmacology , Phthalazines/pharmacology , Pyridazines/pharmacology , Trypanocidal Agents/pharmacology , Animals , Chlorocebus aethiops , Imidazoles/chemical synthesis , Imidazoles/toxicity , Leishmania braziliensis/drug effects , Leishmania donovani/drug effects , Leishmania infantum/drug effects , Parasitic Sensitivity Tests , Phthalazines/chemical synthesis , Phthalazines/toxicity , Pyridazines/chemical synthesis , Pyridazines/toxicity , Trypanocidal Agents/chemical synthesis , Trypanocidal Agents/toxicity , Trypanosoma cruzi/drug effects , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...