Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Zool ; 69(2): 128-135, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37091994

ABSTRACT

Despite numerous works devoted to hybrid origin of parthenogenesis in reptiles, the causes of hybridization between different species, resulting in the origin of parthenogenetic forms, remain uncertain. Recent studies demonstrate that sexual species considered parental to parthenogenetic rock lizards (Darevskia spp.) avoid interspecific mating in the secondary overlap areas. A specific combination of environmental factors during last glaciation period was critical for ectotherms, which led to a change in their distribution and sex ratio. Biased population structure (e.g., male bias) and limited available distributional range favored the deviation of reproductive behavior when species switched to interspecific mates. To date, at least 7 diploid parthenogenetic species of rock lizards (Darevskia, Lacertidae) originated through interspecific hybridization in the past. The cytogenetic specifics of meiosis, in particular the weak checkpoints of prophase I, may have allowed the formation of hybrid karyotypes in rock lizards. Hybridization and polyploidization are 2 important evolutionary forces in the genus Darevskia. At present, throughout backcrossing between parthenogenetic and parental species, the triploid and tetraploid hybrid individuals appear annually, but no triploid species found among Darevskia spp. on current stage of evolution. The speciation by hybridization with the long-term stage of diploid parthenogenetic species, non-distorted meiosis, together with the high ecological plasticity of Caucasian rock lizards provide us with a new model for considering the pathways and persistence of the evolution of parthenogenesis in vertebrates.

2.
Curr Res Physiol ; 5: 369-380, 2022.
Article in English | MEDLINE | ID: mdl-36176920

ABSTRACT

Some biochemical properties of the H+-Ca2+-exchanger in uterine smooth muscle mitochondria have been described. The experiments were performed on a suspension of isolated mitochondria from the myometrium of rats. Methods of confocal microscopy, spectrofluorimetry and photon correlation spectroscopy were used. Fluo-4 probe was used to record changes in ionized Ca2+ in the matrix and cytosol; pH changes in the matrix were evaluated with BCECF. It was experimentally proved that in the myometrium instead of Na+-Ca2+-exchanger the H+-Ca2+-exchanger functions. It was activated at a physiological pH value, was carried out in stoichiometry 1: 1 and was electrogenic. The transport system was modulated by magnesium ions and the diuretic amiloride, but was not sensitive to changes in the concentration of extra-mitochondrial potassium ions. H+-Ca2+-exchanger was suppressed by antibodies against the LETM1 protein. Calmodulin may act as a regulator of H+-Ca2+-exchanger by inhibiting it.

3.
Exp Cell Res ; 397(2): 112358, 2020 12 15.
Article in English | MEDLINE | ID: mdl-33160998

ABSTRACT

The fundamental question about the functionality of in vitro derived human primordial germ cell-like cells remains unanswered, despite ongoing research in this area. Attempts have been made to imitate the differentiation of human primordial germ cells (hPGCs) and meiocytes in vitro from human pluripotent stem cells (hPSCs). A defined system for developing human haploid cells in vitro is the challenge that scientists face to advance the knowledge of human germ cell development. To develop human primordial germ cell-like cells (hPGCLCs) from human pluripotent stem cells (hPSCs) that are capable of giving rise to haploid cells, we applied a sequential induction protocol via the early mesodermal push of female human embryonic and induced pluripotent stem cells. BMP4-induced early mesoderm-like cells showed significant alterations in their expression profiles toward early (PRDM1 and NANOS3) and late (VASA and DAZL) germ cell markers. Furthermore, using retinoic acid (RA), we induced hPGCLCs in embryoid bodies and identified positive staining for the meiotic initiation marker STRA8. Efforts to find the cells exhibiting progression to meiosis were unsuccessful. The validation by the expression of SCP3 did not correspond to the natural pattern. Regarding the 20-day meiotic induction, the derived hPGCLCs containing two X-chromosomes were unable to complete the meiotic division. We observed the expression of the oocyte marker PIWIL1 and PIWIL4. RNAseq analysis and cluster dendrogram showed a similar clustering of hPGCLC groups and meiotic like cell groups as compared to previously published data. This reproducible in vitro model for deriving hPGCLCs provides opportunities for studying the molecular mechanisms involved in the specification of hPGCs. Moreover, our results will support a further elucidation of gametogenesis and meiosis of female hPGCs.


Subject(s)
Cell Differentiation , Embryoid Bodies/cytology , Gene Expression Regulation, Developmental , Germ Cells/cytology , Induced Pluripotent Stem Cells/cytology , Meiosis , Cells, Cultured , Embryoid Bodies/metabolism , Female , Gene Expression Profiling , Germ Cells/metabolism , Humans , In Vitro Techniques , Induced Pluripotent Stem Cells/metabolism , RNA-Seq
SELECTION OF CITATIONS
SEARCH DETAIL
...