Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Anim Biosci ; 37(5): 832-838, 2024 May.
Article in English | MEDLINE | ID: mdl-38271973

ABSTRACT

OBJECTIVE: The use of molecular genetic methods in pig breeding can significantly increase the efficiency of breeding and breeding work. We applied the Fst (fixsacion index) method, the main focus of the work was on the search for common options related to the number of born piglets and the weight of born piglets, since today the urgent task is to prevent a decrease in the weight of piglets at birth while maintaining high fertility of sows. METHODS: One approach is to scan the genome, followed by an assessment of Fst and identification of selectively selected regions. We chose Large White sows (n = 237) with the same conditions of keeping and feeding. The data were collected from the sows across three farrowing. For genotyping, we used GeneSeek GGP Porcine HD Genomic Profiler v1, which included 68,516 single nucleotide polymorphisms evenly distributed with an average spacing of 25 kb (Illumina Inc, San Diego, CA, USA). RESULTS: Based on the results of the Fst analysis, 724 variants representing selection signals for the signs BALWT, BALWT1, NBA, and TNB (weight of piglets born alive, average weight of the 1st piglets born alive, total number born alive, total number born). At the same time, 18 common variants have been identified that are potential markers for both the number of piglets at birth and the weight of piglets at birth, which is extremely important for breeding work to improve reproductive characteristics in sows. CONCLUSION: Оur work resulted in identification of variants associated with the reproductive characteristics of pigs. Moreover, we identified, variants which are potential markers for both the number of piglets at birth and the weight of piglets at birth, which is extremely important for breeding work to improve reproductive performance in sows.

2.
Genes (Basel) ; 14(11)2023 Nov 08.
Article in English | MEDLINE | ID: mdl-38002997

ABSTRACT

One of the most important areas of modern genome research is the search for meaningful relationships between genetic variants and phenotypes. In the livestock field, there has been research demonstrating the influence of copy number variants (CNVs) on phenotypic variation. Despite the wide range in the number and size of detected CNVs, a significant proportion differ between breeds and their functional effects are underestimated in the pig industry. In this work, we focused on the problem of leg defects in pigs (lumps/growths in the area of the hock joint on the hind legs) and focused on searching for molecular genetic predictors associated with this trait for the selection of breeding stock. The study was conducted on Large White pigs using three CNV calling tools (PennCNV, QuantiSNP and R-GADA) and the CNVRanger association analysis tool (CNV-GWAS). As a result, the analysis identified three candidate CNVRs associated with the formation of limb defects. Subsequent functional analysis suggested that all identified CNVs may act as potential predictors of the hock joint phenotype of pigs. It should be noted that the results obtained indicate that all significant regions are localized in genes (CTH, SRSF11, MAN1A1 and LPIN1) responsible for the metabolism of amino acids, fatty acids, glycerolipids and glycerophospholipids, thereby related to the immune response, liver functions, content intramuscular fat and animal fatness. These results are consistent with previously published studies, according to which a predisposition to the formation of leg defects can be realized through genetic variants associated with the functions of the liver, kidneys and hematological characteristics.


Subject(s)
Genome-Wide Association Study , Genome , Swine/genetics , Animals , Genotype , Phenotype , DNA Copy Number Variations
3.
Genes (Basel) ; 13(2)2022 01 22.
Article in English | MEDLINE | ID: mdl-35205240

ABSTRACT

Pigs are strategically important animals for the agricultural industry. An assessment of genetic differentiation between pigs, undergone and not undergone to selection intensification, is of particular interest. Our research was conducted on two groups of Large White pigs grown on the same farm but in different years. A total of 165 samples were selected with 78 LW_А (n = 78, the Russian selection) and LW_B (n = 87, a commercial livestock). For genotyping, we used GeneSeek® GGP Porcine HD Genomic Profiler v1 (Illumina Inc, San Diego, CA, USA). To define breeding characteristics of selection, we used smoothing FST and segment identification of HBD (Homozygous-by-Descent). The results of smoothing FST showed 20 areas of a genome with strong ejection regions of the genome located on all chromosomes except SSC2, SSC3, and SSC8. The average realized autozygosity in Large White pigs of native selection was in (LW_A)-0.21, in LW_В-0.29. LW_А showed 13,338 HBD segments, 171 per one animal, and LW_B-15,747 HBD segments, 181 per one animal. The ejections found by the smoothing FST method were partially localized in the HBD regions. In these areas, the genes ((NCBP1, PLPPR1, GRIN3A, NBEA, TRPC4, HS6ST3, NALCN, SMG6, TTC3, KCNJ6, IKZF2, OBSL1, CARD10, ETV6, VWF, CCND2, TSPAN9, CDH13, CEP128, SERPINA11, PIK3CG, COG5, BCAP29, SLC26A4) were defined. The revealed genes can be of special interest for further studying their influence on an organism of an animal since they can act as candidate genes for selection-significant traits.


Subject(s)
Genome , Genomics , Animals , Genomics/methods , Homozygote , Phenotype , Russia , Swine/genetics
4.
Life (Basel) ; 11(6)2021 May 31.
Article in English | MEDLINE | ID: mdl-34073088

ABSTRACT

Capped hock affects the exterior of pedigree pigs, making them unsalable and resulting in a negative impact on the efficiency of pig-breeding centers. The purpose of this paper was to carry out pilot studies aimed at finding genomic regions and genes linked to the capped hock in pigs. The studies were carried out on Landrace pigs (n = 75) and Duroc pigs (n = 70). To identify genomic regions linked to capped hock in pigs, we used smoothing FST statistics. Genotyping was performed with GeneSeek® GGP Porcine HD Genomic Profiler v1 (Illumina Inc, USA). The research results showed 70 SNPs linked to capped hock in Landrace (38 SNPs) and Duroc (32 SNPs). The identified regions overlapped with QTLs related with health traits (blood parameters) and meat and carcass traits (fatness). In total, 31 genes were identified (i.e., 17 genes in Landrace, 14 genes in Durocs). Three genes appeared in both the Landrace and Duroc groups, including A2ML1 (SSC5), ROBO2 (SSC13), and MSI1 (SSC14). We identified genomic regions directly or indirectly linked to capped hock, which thus might contribute to identifying genetic variants and using them as genetic markers in pig breeding.

5.
Scientifica (Cairo) ; 2020: 5243689, 2020.
Article in English | MEDLINE | ID: mdl-32802554

ABSTRACT

The reproductive ability of sows is the principle of continuous and efficient production, based on such traits as the number of piglets, the total number of parities, and the period of economic use. Currently, SNPs associated with the TNB and NBA are presented in the PigQTLdb. The aim of this work was the assessment of the SNP effects on the litter traits in Large White (LW, n = 502) and Landrace (LN, n = 432) sow breeds in a farm in Russia. 9 SNPs (SNP_1: rs80956812; SNP_2: rs81471381; SNP_3: rs80891106; SNP_4: rs81399474; SNP_5: rs81421148; SNP_6: rs81242222; SNP_7: rs81319839; SNP_8: rs81312912; SNP_9: rs80962240) were selected for the study. Associative analysis was performed using the GLM procedure in R version 3.5.1. The analysis of reproductive traits was carried out according to the results of the first parity, the second and subsequent parities, and totals for lifetime of sows. The significant effect on litter traits in LW was determined for SNP rs80956812, SNP rs81471381, SNP rs81421148, and SNP rs81399474. The significant effect on litter traits in LN was determined for SNP rs81421148 and SNP rs81319839. AKT3 gene was identified as perspective candidate gene, whose biological functions, as well as the results obtained in our work and in other studies, indicate its potential role in the reproductive process regulation in pigs. In general, the data obtained help to explain the genetic mechanisms of reproductive traits.

6.
Genes (Basel) ; 11(5)2020 04 30.
Article in English | MEDLINE | ID: mdl-32365801

ABSTRACT

Reproductive productivity depend on a complex set of characteristics. The number of piglets at birth (Total number born, Litter size, TNB) and the number of alive piglets at birth (Total number born alive, NBA) are the main indicators of the reproductive productivity of sows in pig breeding. Great hopes are pinned on GWAS (Genome-Wide Association Studies) to solve the problems associated with studying the genetic architecture of reproductive traits of pigs. This paper provides an overview of international studies on SNP (Single nucleotide polymorphism) associated with TNB and NBA in pigs presented in PigQTLdb as "Genome map association". Currently on the base of Genome map association results 306 SNPs associated with TNB (218 SNPs) and NBA (88 SNPs) have been identified and presented in the Pig QTLdb database. The results are based on research of pigs such as Large White, Yorkshire, Landrace, Berkshire, Duroc and Erhualian. The presented review shows that most SNPs found in chromosome areas where candidate genes or QTLs (Quantitative trait locus) have been identified. Further research in the given direction will allow to obtain new data that will become an impulse for creating breakthrough breeding technologies and increase the production efficiency in pig farming.


Subject(s)
Litter Size/genetics , Quantitative Trait Loci/genetics , Reproduction/genetics , Swine/genetics , Animals , Breeding , Chromosomes/genetics , Female , Genome-Wide Association Study , Genotype , Phenotype , Polymorphism, Single Nucleotide/genetics , Pregnancy , Sus scrofa/genetics
7.
PeerJ ; 8: e8764, 2020.
Article in English | MEDLINE | ID: mdl-32231879

ABSTRACT

Industrial pig farming is associated with negative technological pressure on the bodies of pigs. Leg weakness and lameness are the sources of significant economic loss in raising pigs. Therefore, it is important to identify the predictors of limb condition. This work presents assessments of the state of limbs using indicators of growth and meat characteristics of pigs based on machine learning algorithms. We have evaluated and compared the accuracy of prediction for nine ML classification algorithms (Random Forest, K-Nearest Neighbors, Artificial Neural Networks, C50Tree, Support Vector Machines, Naive Bayes, Generalized Linear Models, Boost, and Linear Discriminant Analysis) and have identified the Random Forest and K-Nearest Neighbors as the best-performing algorithms for predicting pig leg weakness using a small set of simple measurements that can be taken at an early stage of animal development. Measurements of Muscle Thickness, Back Fat amount, and Average Daily Gain were found to be significant predictors of the conformation of pig limbs. Our work demonstrates the utility and relative ease of using machine learning algorithms to assess the state of limbs in pigs based on growth rate and meat characteristics.

SELECTION OF CITATIONS
SEARCH DETAIL
...