Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Microorganisms ; 11(4)2023 Mar 28.
Article in English | MEDLINE | ID: mdl-37110281

ABSTRACT

The common cold, which is mostly caused by respiratory viruses and clinically represented by the symptoms of acute respiratory viral infections (ARVI) with mainly upper respiratory tract involvement, is an important problem in pediatric practice. Due to the high prevalence, socio-economic burden, and lack of effective prevention measures (except for influenza and, partially, RSV infection), ARVI require strong medical attention. The purpose of this descriptive literature review was to analyze the current practical approaches to the treatment of ARVI to facilitate the choice of therapy in routine practice. This descriptive overview includes information on the causative agents of ARVI. Special attention is paid to the role of interferon gamma as a cytokine with antiviral and immunomodulatory effects on the pathogenesis of ARVI. Modern approaches to the treatment of ARVI, including antiviral, pathogenesis-directed and symptomatic therapy are presented. The emphasis is on the use of antibody-based drugs in the immunoprophylaxis and immunotherapy of ARVI. The data presented in this review allow us to conclude that a modern, balanced and evidence-based approach to the choice of ARVI treatment in children should be used in clinical practice. The published results of clinical trials and systematic reviews with meta-analyses of ARVI in children allow us to conclude that it is possible and expedient to use broad-spectrum antiviral drugs in complex therapy. This approach can provide an adequate response of the child's immune system to the virus without limiting the clinical possibilities of using only symptomatic therapy.

2.
Cells ; 9(3)2020 03 14.
Article in English | MEDLINE | ID: mdl-32183238

ABSTRACT

Electron microscopic study of cardiomyocytes taken from healthy Wistar and OXYS rats and naked mole rats (Heterocephalus glaber) revealed mitochondria in nuclei that lacked part of the nuclear envelope. The direct interaction of mitochondria with nucleoplasm is shown. The statistical analysis of the occurrence of mitochondria in cardiomyocyte nuclei showed that the percentage of nuclei with mitochondria was roughly around 1%, and did not show age and species dependency. Confocal microscopy of normal rat cardiac myocytes revealed a branched mitochondrial network in the vicinity of nuclei with an organization different than that of interfibrillar mitochondria. This mitochondrial network was energetically functional because it carried the membrane potential that responded by oscillatory mode after photodynamic challenge. We suggest that the presence of functional mitochondria in the nucleus is not only a consequence of certain pathologies but rather represents a normal biological phenomenon involved in mitochondrial/nuclear interactions.


Subject(s)
Cell Nucleus/physiology , Microscopy, Electron/methods , Mitochondria, Heart/physiology , Nuclear Envelope/physiology , Animals , Microscopy, Confocal , Models, Animal , Mole Rats , Rats , Rats, Wistar
3.
BMC Genet ; 17(Suppl 3): 153, 2016 12 22.
Article in English | MEDLINE | ID: mdl-28105932

ABSTRACT

BACKGROUND: There has been considerable interest in discovery of the genetic architecture of complex traits, particularly age-related neurodegenerative disorders. To predict disease risk and to understand its genetic basis in humans, it is necessary to study animal models. Our previous research on the accelerated-senescence OXYS strain has revealed two quantitative trait loci (QTLs) on rat chromosome 1 that are associated with early cataract and/or retinopathy as well as with behavioral abnormalities. Each locus was partially mapped within the introgressed segments in a certain congenic strain: WAG/OXYS-1.1 or WAG/OXYS-1.2. Retinal transcriptome profiling of 20-day-old congenic and OXYS rats by high-throughput RNA sequencing uncovered relevant candidate genes and pathways. Nonetheless, the question remained open whether the same genetic components simultaneously have effects on various manifestations of the accelerated-senescence phenotype in OXYS rats. The present study was designed to analyze the genes of susceptibility to early neurodegenerative processes taking place in the OXYS rat retina and brain and to assess their potential functional clustering. The study was based on the findings from recent publications (including mapping of quantitative trait loci) and on comparative phenotyping of congenic rat strains. RESULTS: The backcrossing of Wistar Albino Glaxo (WAG) and OXYS strains to generate the congenics resulted in two congenic strains with high susceptibility to cataract and retinopathy but with no obvious signs of Alzheimer's disease-like brain pathology that are specific for OXYS rats. Thus, the genes of susceptibility to brain neurodegeneration were not introgressed into the congenic strains or there is a strong effect of the genetic background on the disease phenotype. Moreover, the progression of retinopathy with age was relatively less severe in the WAG background compared to the OXYS background. A comparative analysis of previously defined QTLs and congenic segments led to identification of candidate genes with a suspected effect on brain neurodegeneration including the genes showing differential expression in the congenic strains. CONCLUSION: Overall, our findings suggest that the cause of the cataract and the cause of retinopathy phenotypes in OXYS rats may be genetically linked to each other within the introgressed segments in the WAG/OXYS-1.1 and/or WAG/OXYS-1.2 congenic strains.


Subject(s)
Alzheimer Disease/pathology , Brain/metabolism , Macular Degeneration/pathology , Retina/metabolism , Aging , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/genetics , Animals , Animals, Congenic , Behavior, Animal , Brain/diagnostic imaging , Brain/pathology , Cataract/genetics , Cataract/pathology , Disease Models, Animal , Disease Susceptibility , Macular Degeneration/genetics , Magnetic Resonance Imaging , Male , Phenotype , Principal Component Analysis , Quantitative Trait Loci , Rats , Rats, Wistar , Retina/pathology
4.
Clin Hemorheol Microcirc ; 60(4): 405-11, 2015.
Article in English | MEDLINE | ID: mdl-25062716

ABSTRACT

Rheohaemapheresis aims to normalize major rheological parameters and is used to treat patients with dry age-related macular degeneration (AMD). While effective, this approach is invasive and requires specially trained personnel. Therefore, the search for novel effective compounds with hemorheological properties that can be taken orally to treat AMD is justified. The use of a robust rodent model of AMD with high blood viscosity is crucial to test the efficacy of potential hemorheological drugs to treat this disease. The objective of this study was to investigate whether OXYS rats, generally used as an animal model of AMD, have hyperviscosity syndrome. The results of this study show that blood viscosity in OXYS rats at low (3-10 s -1) and high (45-300 s -1) shear rates were 14-20% and 7-10% higher than in Wistar rats, while hematocrit and plasma viscosity were not different. Red blood cells (RBCs) in OXYS rats were more prone to aggregation as shown by 39% shorter half-time than in Wistar rats. RBCs were also more rigid in OXYS than in Wistar rats as shown by 21-33% lower index of elongation at the shear stress of 1-7 Pa. These data indicate that OXYS rats have hyperviscosity syndrome as the result of abnormal RBC deformability and aggregation. We propose to use OXYS rats as an animal model for preclinical studies to test compounds with hemorheological properties aimed to treat AMD.


Subject(s)
Blood Viscosity/drug effects , Erythrocyte Aggregation/physiology , Macular Degeneration/blood , Rheology , Animals , Disease Models, Animal , Erythrocyte Deformability , Hematocrit , Humans , Male , Rats , Rats, Wistar , Syndrome
5.
BMC Genomics ; 15 Suppl 12: S3, 2014.
Article in English | MEDLINE | ID: mdl-25563673

ABSTRACT

BACKGROUND: Etiology of complex disorders, such as cataract and neurodegenerative diseases including age-related macular degeneration (AMD), remains poorly understood due to the paucity of animal models, fully replicating the human disease. Previously, two quantitative trait loci (QTLs) associated with early cataract, AMD-like retinopathy, and some behavioral aberrations in senescence-accelerated OXYS rats were uncovered on chromosome 1 in a cross between OXYS and WAG rats. To confirm the findings, we generated interval-specific congenic strains, WAG/OXYS-1.1 and WAG/OXYS-1.2, carrying OXYS-derived loci of chromosome 1 in the WAG strain. Both congenic strains displayed early cataract and retinopathy but differed clinically from OXYS rats. Here we applied a high-throughput RNA sequencing (RNA-Seq) strategy to facilitate nomination of the candidate genes and functional pathways that may be responsible for these differences and can contribute to the development of the senescence-accelerated phenotype of OXYS rats. RESULTS: First, the size and map position of QTL-derived congenic segments were determined by comparative analysis of coding single-nucleotide polymorphisms (SNPs), which were identified for OXYS, WAG, and congenic retinal RNAs after sequencing. The transferred locus was not what we expected in WAG/OXYS-1.1 rats. In rat retina, 15442 genes were expressed. Coherent sets of differentially expressed genes were identified when we compared RNA-Seq retinal profiles of 20-day-old WAG/OXYS-1.1, WAG/OXYS-1.2, and OXYS rats. The genes most different in the average expression level between the congenic strains included those generally associated with the Wnt, integrin, and TGF-ß signaling pathways, widely involved in neurodegenerative processes. Several candidate genes (including Arhgap33, Cebpg, Gtf3c1, Snurf, Tnfaip3, Yme1l1, Cbs, Car9 and Fn1) were found to be either polymorphic in the congenic loci or differentially expressed between the strains. These genes may contribute to the development of cataract and retinopathy. CONCLUSIONS: This study is the first RNA-Seq analysis of the rat retinal transcriptome generated with 40 mln sequencing read depth. The integration of QTL and transcriptomic analyses in our study forms the basis of future research into the relationship between the candidate genes within the congenic regions and specific changes in the retinal transcriptome as possible causal mechanisms that underlie age-associated disorders.


Subject(s)
Cataract/genetics , Quantitative Trait Loci , Retinal Diseases/genetics , Transcriptome , Animals , Animals, Congenic , Cataract/metabolism , Chromosome Mapping , Gene Expression Profiling , Male , Phenotype , Polymorphism, Genetic , Rats , Rats, Wistar , Retina/metabolism , Retinal Diseases/metabolism
6.
Cell Cycle ; 12(11): 1745-61, 2013 Jun 01.
Article in English | MEDLINE | ID: mdl-23656783

ABSTRACT

Pathogenesis of age-related macular degeneration (AMD), the leading cause of vision loss in the elderly, remains poorly understood due to the paucity of animal models that fully replicate the human disease. Recently, we showed that senescence-accelerated OXYS rats develop a retinopathy similar to human AMD. To identify alterations in response to normal aging and progression of AMD-like retinopathy, we compared gene expression profiles of retina from 3- and 18-mo-old OXYS and control Wistar rats by means of high-throughput RNA sequencing (RNA-Seq). We identified 160 and 146 age-regulated genes in Wistar and OXYS retinas, respectively. The majority of them are related to the immune system and extracellular matrix turnover. Only 24 age-regulated genes were common for the two strains, suggestive of different rates and mechanisms of aging. Over 600 genes showed significant differences in expression between the two strains. These genes are involved in disease-associated pathways such as immune response, inflammation, apoptosis, Ca ( 2+) homeostasis and oxidative stress. The altered expression for selected genes was confirmed by qRT-PCR analysis. To our knowledge, this study represents the first analysis of retinal transcriptome from young and old rats with biologic replicates generated by RNA-Seq technology. We can conclude that the development of AMD-like retinopathy in OXYS rats is associated with an imbalance in immune and inflammatory responses. Aging alters the expression profile of numerous genes in the retina, and the genetic background of OXYS rats has a profound impact on the development of AMD-like retinopathy.


Subject(s)
Aging , Macular Degeneration/metabolism , Retina/metabolism , Transcriptome , Animals , High-Throughput Nucleotide Sequencing , Macular Degeneration/pathology , Principal Component Analysis , Rats , Rats, Wistar
7.
Aging (Albany NY) ; 4(1): 49-59, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22300709

ABSTRACT

Age-related macular degeneration (AMD) and cataract are common age-related diseases in humans. Previously we showed that senescence-accelerated OXYS rats develop retinopathy and cataract, which are comparable to human AMD and senile cataract. Here we focused on the identification of quantitative trait loci (QTLs), which affect early-onset cataract and retinopathy in OXYS rats, using F2 hybrids bred by a reciprocal cross (OXYS×WAG and WAG×OXYS). Chromosome 1 showed significant associations between retinopathy and loci in the regions of markers D1Rat30 and D1Rat219 (QTL1) as well as D1Rat219 and D1Rat81 (QTL2); and between early cataract development with the locus in the region of the markers D1Rat219 and D1Rat81 (QTL2). To determine the effects of these QTLs, we generated two congenic strains by transferring chromosome 1 regions from OXYS into WAG background. Both congenic strains (named WAG/OXYS-1.1 and WAG/OXYS-1.2, respectively) display early cataract and retinopathy development. Thus, we confirmed that genes located in the analyzed regions of chromosome 1 are associated with the development of these diseases in OXYS rats.


Subject(s)
Aging/genetics , Cataract/genetics , Chromosomes/genetics , Macular Degeneration/genetics , Quantitative Trait Loci/genetics , Animals , Animals, Congenic , Female , Gene Expression Regulation/physiology , Hybridization, Genetic , Male , Pedigree , Rats
8.
PLoS One ; 6(7): e21682, 2011.
Article in English | MEDLINE | ID: mdl-21750722

ABSTRACT

UNLABELLED: The incidence of age-related macular degeneration (AMD), the main cause of blindness in older patients in the developed countries, is increasing with the ageing population. At present there is no effective treatment for the prevailing geographic atrophy, dry AMD, whereas antiangiogenic therapies successful used in managing the wet form of AMD. Recently we showed that mitochondria-targeted antioxidant plastoquinonyl-decyl-triphenylphosphonium (SkQ1) is able to prevent the development and moreover caused regression of pre-existing signs of the retinopathy in OXYS rats, an animal model of AMD. Here we examine the effects of SkQ1 on expression of key regulators of angiogenesis vascular endothelial growth factor A (VEGF) and its antagonist pigment epithelium-derived factor (PEDF) genes in the retina of OXYS rats as evidenced by real-time PCR and an ELISA test for VEGF using Wistar rats as control. Ophthalmoscopic examinations confirmed that SkQ1 supplementation (from 1.5 to 3 months of age, 250 nmol/kg) prevented development while eye drops SkQ1 (250 nM, from 9 to 12 months) caused some reduction of retinopathy signs in OXYS rats and did not reveal any negative effects on the control Wistar rat's retina. Prevention of premature retinopathy by SkQ1 was connected with an increase of VEGF mRNA and protein in OXYS rat's retina up to the levels corresponding to the Wistar rats, and did not involve changes in PEDF expression. In contrast the treatment with SkQ1 drops caused a decrease of VEGF mRNA and protein levels and an increase in the PEDF mRNA level in the middle-aged OXYS rats, but in Wistar rats the changes of gene expression were the opposite. CONCLUSIONS: The beneficial effects of SkQ1 on retinopathy connected with normalization of expression of VEGF and PEDF in the retina of OXYS rats and depended on age of the animals and the stage of retinopathy.


Subject(s)
Eye Proteins/genetics , Macular Degeneration/prevention & control , Nerve Growth Factors/genetics , Plastoquinone/analogs & derivatives , Serpins/genetics , Vascular Endothelial Growth Factor A/genetics , Animals , Antioxidants/pharmacology , Enzyme-Linked Immunosorbent Assay , Eye Proteins/metabolism , Gene Expression/drug effects , Humans , Macular Degeneration/genetics , Macular Degeneration/metabolism , Male , Mitochondria/drug effects , Mitochondria/metabolism , Nerve Growth Factors/metabolism , Ophthalmoscopy , Plastoquinone/pharmacology , Rats , Rats, Wistar , Retina/drug effects , Retina/metabolism , Retina/pathology , Reverse Transcriptase Polymerase Chain Reaction , Serpins/metabolism , Time Factors , Vascular Endothelial Growth Factor A/metabolism
9.
Aging (Albany NY) ; 3(1): 44-54, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21191149

ABSTRACT

Pathogenesis of age-related macular degeneration (AMD), the leading cause of blindness in the world, remains poorly understood. This makes it necessary to create animal models for studying AMD pathogenesis and to design new therapeutic approaches. Here we showed that retinopathy in OXYS rats is similar to human AMD according to clinical signs, morphology, and vascular endothelium growth factor (VEGF) and pigment epithelium-derived factor (PEDF) genes expression. Clinical signs of retinopathy OXYS rats manifest by the age 3 months against the background of significantly reduced expression level of VEGF and PEDF genes due to the decline of the amount of retinal pigment epithelium (RPE) cells and alteration of choroidal microcirculation. The disruption in OXYS rats' retina starts at the age of 20 days and appears as reduce the area of RPE cells but does not affect their ultrastructure. Ultrastructural pathological alterations of RPE as well as develop forms of retinopathy are observed in OXYS rats from age 12 months and manifested as excessive accumulation of lipofuscin in RPE regions adjacent to the rod cells, whirling extentions of the basement membrane into the cytoplasm. These data suggest that primary cellular degenerative alterations in the RPE cells secondarily lead to choriocapillaris atrophy and results in complete loss of photoreceptor cells in the OXYS rats' retina by the age of 24 months.


Subject(s)
Aging/physiology , Macular Degeneration/pathology , Rats, Inbred Strains , Retinal Pigment Epithelium/pathology , Animals , Eye Proteins/genetics , Eye Proteins/metabolism , Gene Expression , Humans , Male , Nerve Growth Factors/genetics , Nerve Growth Factors/metabolism , Rats , Rats, Wistar , Retina/pathology , Retina/ultrastructure , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/ultrastructure , Serpins/genetics , Serpins/metabolism , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism
10.
Aging (Albany NY) ; 1(4): 389-401, 2009 Apr 22.
Article in English | MEDLINE | ID: mdl-20195490

ABSTRACT

One of the most striking changes during mammal aging is a progressive involution of the thymus, associated with an increase in susceptibility to infections, autoimmune diseases and cancer. In order to delay age-related processes, we have developed mitochondria-targeted antioxidant plastoquinonyl decyltriphenyl phosphonium (SkQ1). Here we report that, at low doses, SkQ1 (250 nmol/kg per day) inhibited age-dependent involution of the thymus in normal (Wistar) and senescence-prone (OXYS) rats. SkQ1 preserved total weight and volume of the organ, the volume of thymic cortex and medulla, the thymic cellularity, and the number of CD3+, CD4+, and CD8+ cells in the thymus. Moreover, SkQ1 was especially effective in senescence-prone rats. Thus SkQ1 slows down age-linked decline of the immune system, explaining prevention by this compound of infection-caused death in rodents, previously described in our group.


Subject(s)
Aging/physiology , Mitochondria/drug effects , Plastoquinone/analogs & derivatives , Thymus Gland/drug effects , Thymus Gland/physiology , Animals , Antioxidants/pharmacology , Mitochondria/physiology , Plastoquinone/pharmacology , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...