Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
ACS Nano ; 18(23): 15084-15095, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38815170

ABSTRACT

Antibodies and their conjugates of fluorescent labels are widely applied in life sciences research and clinical pathology. Among diverse label types, compact quantum dots (QDs) provide advantages of multispectral multiplexing, bright signals in the deep red and infrared, and low steric hindrance. However, QD-antibody conjugates have random orientation of the antigen-binding domain which may interfere with labeling and are large (20-30 nm) and heterogeneous, which limits penetration into biospecimens. Here, we develop conjugates of compact QDs and Fab' antibody fragments as primary immunolabels. Fab' fragments are conjugated site-specifically through sulfhydryl groups distal to antigen-binding domains, and the multivalent conjugates have small and homogeneous sizes (∼12 nm) near those of full-sized antibodies. Their performance as immunolabels for intracellular antigens is evaluated quantitatively by metrics of microtubule labeling density and connectivity in fixed cells and for cytological identification in fixed brain specimens, comparing results with probes based on spectrally-matched dyes. QD-Fab' conjugates outperformed QD conjugates of full-sized antibodies and could be imaged with bright signals with 1-photon and 2-photon excitation. The results demonstrate a requirement for smaller bioaffinity agents and site-specific orientation for the success of nanomaterial-based labels to enhance penetration in biospecimens and minimize nonspecific staining.


Subject(s)
Immunoglobulin Fab Fragments , Microtubules , Quantum Dots , Quantum Dots/chemistry , Immunoglobulin Fab Fragments/chemistry , Immunoglobulin Fab Fragments/immunology , Microtubules/chemistry , Microtubules/metabolism , Humans , Animals , Mice , Fluorescent Dyes/chemistry
2.
Int J Oncol ; 63(5)2023 Nov.
Article in English | MEDLINE | ID: mdl-37654190

ABSTRACT

Glioblastoma (GBM) is the most common and malignant primary brain tumor affecting adults and remains incurable. The mitochondrial coiled­coil­helix­coiled­coil­helix domain­containing protein 2 (CHCHD2) has been demonstrated to mediate mitochondrial respiration, nuclear gene expression and cell migration; however, evidence of this in GBM is lacking. In the present study, it was hypothesized that CHCHD2 may play a functional role in U87 GBM cells expressing the constitutively active epidermal growth factor receptor variant III (EGFRvIII). The amplification of the CHCHD2 gene was found to be associated with a decreased patient overall and progression­free survival. The CHCHD2 mRNA levels were increased in high­vs. low­grade glioma, IDH­wt GBMs, and in tumor vs. non­tumor tissue. Additionally, CHCHD2 protein expression was greatest in invasive, EGFRvIII­expressing patient­derived samples. The CRISPR­Cas9­mediated knockout of CHCHD2 in EGFRvIII­expressing U87 cells resulted in an altered mitochondrial respiration and glutathione status, in decreased cell growth and invasion under both normoxic and hypoxic conditions, and in an enhanced sensitivity to cytotoxic agents. CHCHD2 was distributed in both the mitochondria and nuclei of U87 and U87vIII cells, and the U87vIII cells exhibited a greater nuclear expression of CHCHD2 compared to isogenic U87 cells. Incubation under hypoxic conditions, serum starvation and the reductive unfolding of CHCHD2 induced the nuclear accumulation of CHCHD2 in both cell lines. Collectively, the findings of the present study indicate that CHCHD2 mediates a variety of GBM characteristics, and highlights mitonuclear retrograde signaling as a pathway of interest in GBM cell biology.


Subject(s)
Brain Neoplasms , Glioblastoma , Adult , Humans , Glioblastoma/pathology , ErbB Receptors/genetics , ErbB Receptors/metabolism , Drug Resistance, Neoplasm , Cell Line, Tumor , Cell Proliferation/genetics , Brain Neoplasms/pathology , Hypoxia , Mitochondria/metabolism , DNA-Binding Proteins/genetics , Transcription Factors
3.
Chem Mater ; 33(13): 4877-4889, 2021 Jul 13.
Article in English | MEDLINE | ID: mdl-35221487

ABSTRACT

Antibody conjugates of quantum dots (QDs) are expected to transform immunofluorescence staining by expanding multiplexed analysis and improving target quantification. Recently, a new generation of small QDs coated with multidentate polymers has improved QD labeling density in diverse biospecimens, but new challenges prevent their routine use. In particular, these QDs exhibit nonspecific binding to fixed cell nuclei and their antibody conjugates have random attachment orientations. This report describes four high-efficiency chemical approaches to conjugate antibodies to compact QDs. Methods include click chemistry and self-assembly through polyhistidine coordination, both with and without adaptor proteins that directionally orient antibodies. Specific and nonspecific labeling are independently analyzed after application of diverse blocking agent classes, and a new assay is developed to quantitatively measure intracellular labeling density based on microtubule stain connectivity. Results show that protein conjugation to the QD surface is required to simultaneously eliminate nonspecific binding and maintain antigen specificity. Of the four conjugation schemes, polyhistidine-based coordination of adaptor proteins with antibody self-assembly yields the highest intracellular staining density and the simplest conjugation procedure. Therefore, antibody and adaptor protein orientation, in addition to blocking optimization, are important determinants of labeling outcomes, insights that can inform translational development of these more compact nanomaterials.

4.
Microsc Res Tech ; 81(2): 115-128, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29131445

ABSTRACT

Mitochondrial morphology is regulated by continuous fusion-and-fission events that are essential for maintaining normal function. Despite the prominence of mitochondrial function in energy generation and cell signaling, understanding of processes of fusion and fission dynamics has been hampered by the lack of high-resolution optical systems that accommodate live-cell imaging. We have examined different confocal modalities in terms of resolution and signal-to-noise ratio (SNR) in a point scanning confocal microscope with Airyscan super-resolution (AS-SR). Results indicated that Airyscan (AS) provided speed, super-resolution, and high SNR. This modality was then used for monitoring mitochondrial dynamics in live tumor cells modified to harbor green-fluorescent protein localized to mitochondria. We then compared regular AS and fast-Airyscan modalities in terms of gentleness on the live-cell samples. The fast mode provided unprecedented imaging speed that permits monitoring dynamics both in 2D and also in three-dimensional dataset with time lapses (4D). Alterations to the mitochondrial network in U87 glioblastoma cells occurred within seconds and the cells were not affected by modest inhibition of fission. The super-resolution permitted quantitative measurements of mitochondrial diameter with a precision that enabled detection of significant differences in mitochondrial morphology between cell lines. We have observed swelling of mitochondrial tubules in A549 lung cancer cells after 2 hr treatment with deoxynyboquinone, an ROS-generating pharmacologic drug. We also tested different 3D analytical parameters and how they can affect morphometric quantitation. The AS-SR imaging enabled high-speed imaging of mitochondrial dynamics without the compromise to cell morphology or viability that is common with conventional fluorescence imaging due to photo-oxidation.


Subject(s)
Microscopy, Fluorescence/methods , Mitochondria/ultrastructure , Mitochondrial Dynamics , Time-Lapse Imaging/methods , A549 Cells , Animals , Cell Line, Tumor , Chlorocebus aethiops , Epithelial Cells/ultrastructure , Glioblastoma , Green Fluorescent Proteins , HCT116 Cells , Humans , Imaging, Three-Dimensional/methods , Microscopy, Confocal/methods , Vero Cells
5.
Biochem Biophys Res Commun ; 483(1): 680-686, 2017 01 29.
Article in English | MEDLINE | ID: mdl-27986568

ABSTRACT

Deoxynyboquinone (DNQ), a potent novel quinone-based antineoplastic agent, selectively kills solid cancers with overexpressed cytosolic NAD(P)H:quinone oxidoreductase-1 (NQO1) via excessive ROS production. A genetically encoded redox-sensitive probe was used to monitor intraorganellar glutathione redox potentials (EGSH) as a direct indicator of cellular oxidative stress following chemotherapeutic administration. Beta-lapachone (ß-lap) and DNQ-induced spatiotemporal redox responses were monitored in human lung A549 and pancreatic MIA-PaCa-2 adenocarcinoma cells incubated with or without dicumarol and ES936, potent NQO1 inhibitors. Immediate oxidation of EGSH in both the cytosol and mitochondrial matrix was observed in response to DNQ and ß-lap. The DNQ-induced cytosolic oxidation was fully prevented with NQO1 inhibition, whereas mitochondrial oxidation in A549 was NQO1-independent in contrast to MIA-PaCa-2 cells. However, at pharmacologic concentrations of ß-lap both quinone-based substrates directly oxidized the redox probe, a possible sign of off-target reactivity with cellular thiols. Together, these data provide new evidence that DNQ's direct and discerning NQO1 substrate specificity underlies its pharmacologic potency, while ß-lap elicits off-target responses at its effective doses.


Subject(s)
Antineoplastic Agents/pharmacology , Glutathione/metabolism , NAD(P)H Dehydrogenase (Quinone)/metabolism , Oxidative Stress/drug effects , Quinones/pharmacology , Biosensing Techniques , Cell Line, Tumor , Cytosol/drug effects , Cytosol/metabolism , Dicumarol/pharmacology , Fluorescent Dyes/analysis , Glutaredoxins/analysis , Glutaredoxins/genetics , Glutathione/analysis , Green Fluorescent Proteins/analysis , Green Fluorescent Proteins/genetics , Humans , Indolequinones/pharmacology , Mitochondria/drug effects , Mitochondria/metabolism , Molecular Imaging , Molecular Probes/genetics , Molecular Targeted Therapy , NAD(P)H Dehydrogenase (Quinone)/antagonists & inhibitors , Naphthoquinones/metabolism , Oxidation-Reduction/drug effects , Reactive Oxygen Species/metabolism , Substrate Specificity
6.
Am J Physiol Cell Physiol ; 309(2): C81-91, 2015 Jul 15.
Article in English | MEDLINE | ID: mdl-25994788

ABSTRACT

Excessive oxidation is widely accepted as a precursor to deleterious cellular function. On the other hand, an awareness of the role of reductive stress as a similar pathological insult is emerging. Here we report early dynamic changes in compartmentalized glutathione (GSH) redox potentials in living cells in response to exogenously supplied thiol-based antioxidants. Noninvasive monitoring of intracellular thiol-disulfide exchange via a genetically encoded biosensor targeted to cytosol and mitochondria revealed unexpectedly rapid oxidation of the mitochondrial matrix in response to GSH ethyl ester or N-acetyl-l-cysteine. Oxidation of the probe occurred within seconds in a concentration-dependent manner and was attenuated with the membrane-permeable ROS scavenger tiron. In contrast, the cytosolic sensor did not respond to similar treatments. Surprisingly, the immediate mitochondrial oxidation was not abrogated by depolarization of mitochondrial membrane potential or inhibition of mitochondrial GSH uptake. After detection of elevated levels of mitochondrial ROS, we systematically inhibited multisubunit protein complexes of the mitochondrial respiratory chain and determined that respiratory complex III is a downstream target of thiol-based compounds. Disabling complex III with myxothiazol completely blocked matrix oxidation induced with GSH ethyl ester or N-acetyl-l-cysteine. Our findings provide new evidence of a functional link between exogenous thiol-containing antioxidants and mitochondrial respiration.


Subject(s)
Antioxidants/pharmacology , Electron Transport Complex III/metabolism , Mitochondria/drug effects , Oxidative Stress/drug effects , Sulfhydryl Compounds/pharmacology , Animals , Biosensing Techniques , CHO Cells , Cricetulus , Electron Transport Complex III/antagonists & inhibitors , Glutaredoxins/genetics , Glutaredoxins/metabolism , Glutathione/metabolism , HCT116 Cells , HEK293 Cells , Humans , Membrane Potential, Mitochondrial/drug effects , Mitochondria/metabolism , Oxidation-Reduction , Reactive Oxygen Species/metabolism , Swine , Time Factors , Transfection
7.
Exp Biol Med (Maywood) ; 239(4): 394-403, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24586100

ABSTRACT

The glutathione couple GSH/GSSG is the most abundant cellular redox buffer and is not at equilibrium among intracellular compartments. Perturbation of glutathione poise has been associated with tumorigenesis; however, due to analytical limitations, the underlying mechanisms behind this relationship are poorly understood. In this regard, we have implemented a ratiometric, genetically encoded redox-sensitive green fluorescent protein fused to human glutaredoxin (Grx1-roGFP2) to monitor real-time glutathione redox potentials in the cytosol and mitochondrial matrix of tumorigenic and non-tumorigenic cells. First, we demonstrated that recovery time in both compartments depended upon the length of exposure to oxidative challenge with diamide, a thiol-oxidizing agent. We then monitored changes in glutathione poise in cytosolic and mitochondrial matrices following inhibition of glutathione (GSH) synthesis with L-buthionine sulphoximine (BSO). The mitochondrial matrix showed higher oxidation in the BSO-treated cells indicating distinct compartmental alterations in redox poise. Finally, the contributory role of the p53 protein in supporting cytosolic redox poise was demonstrated. Inactivation of the p53 pathway by expression of a dominant-negative p53 protein sensitized the cytosol to oxidation in BSO-treated tumor cells. As a result, both compartments of PF161-T+p53(DD) cells were equally oxidized ≈20 mV by inhibition of GSH synthesis. Conversely, mitochondrial oxidation was independent of p53 status in GSH-deficient tumor cells. Taken together, these findings indicate different redox requirements for the glutathione thiol/disulfide redox couple within the cytosol and mitochondria of resting cells and reveal distinct regulation of their redox poise in response to inhibition of glutathione biosynthesis.


Subject(s)
Cytosol/metabolism , Glutathione/biosynthesis , Mitochondria/metabolism , Animals , Buthionine Sulfoximine/pharmacology , CHO Cells , Cell Line , Cricetulus , Diamide/pharmacology , Enzyme Inhibitors/pharmacology , Glutaredoxins/analysis , Glutaredoxins/chemistry , Glutaredoxins/genetics , Glutathione Disulfide/biosynthesis , Green Fluorescent Proteins/analysis , HEK293 Cells , Humans , Mice , Oxidation-Reduction , Oxidative Stress
8.
Biochem Biophys Res Commun ; 439(4): 517-21, 2013 Oct 04.
Article in English | MEDLINE | ID: mdl-24025674

ABSTRACT

We have implemented a ratiometric, genetically encoded redox-sensitive green fluorescent protein fused to human glutaredoxin (Grx1-roGFP2) to monitor real time intracellular glutathione redox potentials of mammalian cells. This probe enabled detection of media-dependent oxidation of the cytosol triggered by short wavelength excitation. The transient nature of light-induced oxidation was revealed by time-lapse live cell imaging when time intervals of less than 30s were implemented. In contrast, transient ROS generation was not observed with the parental roGFP2 probe without Grx1, which exhibits slower thiol-disulfide exchange. These data demonstrate that the enhanced sensitivity of the Grx1-roGFP2 fusion protein enables the detection of short-lived ROS in living cells. The superior sensitivity of Grx1-roGFP2, however, also enhances responsiveness to environmental cues introducing a greater likelihood of false positive results during image acquisition.


Subject(s)
Biosensing Techniques , Glutaredoxins/chemistry , Light , Animals , CHO Cells , Cricetinae , Cricetulus , Cytoplasm/metabolism , Cytosol/metabolism , Disulfides/metabolism , Glutaredoxins/genetics , Glutaredoxins/metabolism , Green Fluorescent Proteins/chemistry , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Humans , Oxidation-Reduction , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Sulfhydryl Compounds/metabolism
9.
Exp Biol Med (Maywood) ; 237(6): 652-62, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22715429

ABSTRACT

The glutathione thiol/disulfide couple is the major redox buffer in the endoplasmic reticulum (ER); however, mechanisms by which it contributes to the tightly regulated redox environment of this intracellular organelle are poorly understood. The recent development of genetically encoded, ratiometric, single green fluorescent protein-based redox-sensitive (roGFP) sensors adjusted for more oxidative environments enables non-invasive measurement of the ER redox environment in living cells. In turn, Förster resonance energy transfer (FRET) sensors based on two fluorophore probes represent an alternative strategy for ratiometric signal acquisition. In previous work, we described the FRET-based redox sensor CY-RL7 with a relatively high midpoint redox potential of -143 mV, which is required for monitoring glutathione potentials in the comparatively high oxidative environment of the ER. Here, the efficacy of the CY-RL7 probe was ascertained in the cytosol and ER of live cells with fluorescence microscopy and flow cytometry. The sensor was found to be fully reduced at steady state in the cytosol and became fully oxidized in response to treatment with 1-chloro-2,4-dinitrobenzene, a depletor of reduced glutathione (GSH). In contrast, the probe was strongly oxidized (88%) upon expression in the ER of cultured cells. We also examined the responsiveness of the ER sensor to perturbations in cellular glutathione homeostasis. We observed that the reductive level of the FRET sensor was increased two-fold to about 28% in cells pretreated with N-acetylcysteine, a substrate for GSH synthesis. Finally, we evaluated the responsiveness of CY-RL7 and roGFP1-iL to various perturbations of cellular glutathione homeostasis to address the divergence in the specificity of these two probes. Together, the present data generated with genetically encoded green fluorescent protein (GFP)-based glutathione probes highlight the complexity of the ER redox environment and indicate that the ER glutathione pool may be more oxidized than is currently considered.


Subject(s)
Endoplasmic Reticulum/metabolism , Fluorescence Resonance Energy Transfer/methods , Glutathione/metabolism , Signal Transduction/physiology , Animals , CHO Cells , Cells, Cultured , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , Cricetinae , Cricetulus , Endoplasmic Reticulum/ultrastructure , Female , HCT116 Cells , Humans , Oocytes/cytology , Oocytes/metabolism , Oxidation-Reduction , Sensitivity and Specificity
10.
Exp Biol Med (Maywood) ; 236(6): 681-91, 2011 Jun 01.
Article in English | MEDLINE | ID: mdl-21606117

ABSTRACT

We report the optimization of a novel redox-sensitive probe with enhanced dynamic range and an exceptionally well-positioned oxidative midpoint redox potential. The present work characterizes factors that contribute to the improved Förster resonance energy transfer (FRET) performance of this green fluorescent protein (GFP)-based redox sensor. The α-helical linker, which separates the FRET donor and acceptor, has been extended in the new probe and leads to a decreased FRET efficiency in the linker's reduced, 'FRET-off' state. Unexpectedly, the FRET efficiency is increased in the new linker's oxidized, 'FRET-on' state compared with the parent probe, in spite of the longer linker sequence. The combination of a lowered baseline 'FRET-off' and an increased 'FRET-on' signal significantly improves the dynamic range of the probe for a more robust discrimination of its reduced and oxidized linker states. Mutagenesis of the cysteine residues within the α-helix linker reveals the importance of the fourth, C-terminal cysteine and the relative insignificance of the second cysteine in forming the disulfide bridge to clamp the linker into the high-FRET, oxidized state. To further optimize the performance of the redox probe, various cyan fluorescent protein (CFP)/yellow fluorescent protein (YFP) FRET pairs, placed at opposite ends of the improved redox linker (RL7), were quantitatively compared and exchanged. We found that the CyPet/YPet and ECFP/YPet FRET pairs when attached to RL7 do not function well as sensitive redox probes due to a strong tendency to form heterodimers, which disrupt the α-helix. However, monomeric versions of CyPet and YPet (mCyPet and mYPet) eliminate dimerization and restore redox sensitivity of the probe. The best performing probe, ECFP-RL7-EYFP, exhibits an approximately six-fold increase in FRET efficiency in vitro when passing from the oxidized to the reduced state. We determined the midpoint redox potential of the probe to be -143 ± 6 mV, which is ideal for measuring glutathione (GSH/GSSG) redox potentials in oxidative compartments of mammalian cells (e.g. the endoplasmic reticulum).


Subject(s)
Chemistry Techniques, Analytical , Cytoplasm/chemistry , Cytoplasm/metabolism , Fluorescence Resonance Energy Transfer/methods , Image Processing, Computer-Assisted/methods , Animals , Cells, Cultured , Fluorescence , Genes, Reporter , Humans , Luminescent Proteins/chemistry , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Mammals , Oxidation-Reduction , Protein Conformation , Sensitivity and Specificity
11.
Integr Biol (Camb) ; 3(3): 208-17, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21183971

ABSTRACT

Despite the potential benefits of selective redox-modulating strategies for cancer therapy, an efficacious methodology for testing therapies remains elusive because of the difficulty in measuring intracellular redox potentials over time. In this report, we have incorporated a new FRET-based biosensor to follow in real time redox-sensitive processes in cells transformed to be tumorigenic and cultured in a microfluidic channel. A microfluidic network was used to control micro-scale flow near the cells and at the same time deliver drugs exogenously. Subsequently, the response of a redox homeostasis circuit was tested, namely reduced glutathione (GSH)/oxidized glutathione(GSSG), to diamide, a thiol oxidant, and two drugs used for cancer therapies: BSO (L-buthionine-[SR]-sulfoximine) and BCNU (carmustine). The main outcome from these experiments is a comparison of the temporal depletion and recovery of GSH in single living cells in real-time. These data demonstrate that mammalian cells are capable of restoring a reduced intracellular redox environment in minutes after an acute oxidative insult is removed. This recovery is significantly delayed by (i) the inhibition of GSH biosynthesis by BSO; (ii) the inactivation of glutathione reductase by BCNU; and (iii) in tumorigenic cells relative to an isogenic non-tumorigenic control cell line.


Subject(s)
Biosensing Techniques/methods , Cell Tracking/methods , Fluorescence Resonance Energy Transfer/methods , Glutathione/metabolism , Microfluidic Analytical Techniques/methods , Animals , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Buthionine Sulfoximine/pharmacology , CHO Cells , Carmustine/pharmacology , Cell Line, Transformed , Cricetinae , Cricetulus , Diamide/metabolism , Diamide/pharmacology , Fibroblasts/drug effects , Fibroblasts/metabolism , Glutathione/antagonists & inhibitors , Glutathione Disulfide/metabolism , Green Fluorescent Proteins/chemistry , Green Fluorescent Proteins/genetics , Kinetics , Luminescent Proteins/chemistry , Luminescent Proteins/genetics , Microscopy, Confocal , Microscopy, Fluorescence/methods , Oxidation-Reduction , Oxidative Stress/drug effects , Oxidative Stress/physiology , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Swine , Transfection
12.
Exp Biol Med (Maywood) ; 233(2): 238-48, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18222979

ABSTRACT

The ability to sense intracellular or intraorganellar reduction/oxidation conditions would provide a powerful tool for studying normal cell proliferation, differentiation, and apoptosis. Genetically encoded biosensors enable monitoring of the intracellular redox environment. We report the development of chimeric polypeptides useful as redox-sensitive linkers in conjunction with Förster resonance energy transfer (FRET). Alpha-helical linkers differing in length were combined with motifs that are sensitive to the redox state of the environment. The first category of linkers included a redox motif found in the thioredoxin family of oxidoreductases. This motif was flanked by two alpha-helices of equal length. The second and third categories of redox linkers were composed of alpha-helices with embedded adjacent and dispersed vicinal cysteine residues, respectively. The linkers containing redox switches were placed between a FRET pair of enhanced cyan and yellow fluorescent proteins and these constructs were tested subsequently for their efficacy. A robust method of FRET analysis, the (ratio)(A) method, was used. This method uses two fluorescence spectra performed directly on the FRET construct without physical separation of the fluorophores. The cyan/yellow construct carrying one of the designed redox linkers, RL5, exhibited a 92% increase in FRET efficiency from its reduced to oxidized states. Responsiveness of the cyan-RL5-yellow construct to changes in the intracellular redox environment was confirmed in mammalian cells by flow cytometry.


Subject(s)
Biosensing Techniques/methods , Fluorescence Resonance Energy Transfer/methods , Protein Engineering/methods , Animals , CHO Cells , Cricetinae , Cricetulus , Cysteine/genetics , Cysteine/metabolism , Flow Cytometry , Oxidation-Reduction , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sensitivity and Specificity
13.
Anal Biochem ; 348(2): 192-7, 2006 Jan 15.
Article in English | MEDLINE | ID: mdl-16337140

ABSTRACT

Chlorophyll biosynthetic heterogeneity is rooted mainly in parallel divinyl (DV) and monovinyl (MV) biosynthetic routes interconnected by 4-vinyl reductases (4VRs) that convert DV tetrapyrroles to MV tetrapyrroles by conversion of the vinyl group at position 4 of the macrocycle to ethyl. What is not clear at this stage is whether the various 4VR activities are catalyzed by one enzyme of broad specificity or by a family of enzymes encoded by one gene or multiple genes with each enzyme having narrow specificity. Additional research is needed to identify the various regulatory components of 4-vinyl reduction. In this undertaking, Arabidopsis mutants that accumulate DV chlorophyllide a and/or DV chlorophyll [Chl(ide)] a are likely to provide an appropriate resource. Because the Arabidopsis genome has been completely sequenced, the best strategy for identifying 4VR and/or putative regulatory 4VR genes is to screen Arabidopsis Chl mutants for DV Chl(ide) a accumulation. In wild-type Arabidopsis, a DV plant species, only MV chlorophyllide (Chlide) a is detectable. However in Chl mutants lacking 4VR activity, DV Chl(ide) a may accumulate in addition to MV Chl(ide) a. In the current work, an in situ assay of DV Chl(ide) a accumulation, suitable for screening a large number of mutants lacking 4-vinyl Chlide a reductase activity with minimal experimental handling, is described. The assay involves homogenization of the tissues in Tris-HCl:glycerol buffer and the recording of Soret excitation spectra at 77K. DV Chlide a formation is detected by a Soret excitation shoulder at 459 nm over a wide range of DV Chlide a/MV Chl a ratios. The DV Chlide a shoulder became undetectable at DV Chlide a/MV Chl a ratios less than 0.049, that is, at a DV Chlide a content of less than 5%.


Subject(s)
Chloroplasts/genetics , Genetic Testing/methods , Mutation , Oxidoreductases/genetics , Chloroplasts/enzymology , Cucumis sativus/enzymology , Cucumis sativus/genetics , Plants/enzymology , Plants/genetics , Spectrophotometry
14.
Anal Biochem ; 329(2): 207-19, 2004 Jun 15.
Article in English | MEDLINE | ID: mdl-15158479

ABSTRACT

The thorough understanding of photosynthetic membrane assembly requires a deeper knowledge of the coordination and regulation of the chlorophyll (Chl) and thylakoid apoprotein biosynthetic pathways. As a working hypothesis we have recently proposed three different Chl-thylakoid apoprotein biosynthesis models: a single-branched Chl biosynthetic pathway (SBP)-single location model, a SBP-multilocation model, and a multibranched Chl biosynthetic pathway (MBP)-sublocation model. The detection of resonance excitation energy transfer between tetrapyrrole precursors of Chl, and several Chl-protein complexes, has made it possible to test the validity of the proposed Chl-thylakoid apoprotein biosynthesis models by resonance excitation energy transfer determinations. In this work, resonance excitation energy transfer techniques that allow the determination of distances separating tetrapyrrole donors from Chl-protein acceptors in green plants by using readily available electronic spectroscopic instrumentation are developed. It is concluded that the calculated distances are compatible with the MBP-sublocation model and incompatible with the operation of the SBP-single location Chl-protein biosynthesis model.


Subject(s)
Chlorophyll/metabolism , Tetrapyrroles/metabolism , Thylakoids/metabolism , Chlorophyll A , Cucumis sativus/metabolism , Data Interpretation, Statistical , Hordeum/metabolism , Spectrometry, Fluorescence , Temperature , Thylakoids/chemistry
15.
J Biol Chem ; 278(50): 49675-8, 2003 Dec 12.
Article in English | MEDLINE | ID: mdl-14594820

ABSTRACT

It has recently been reported that protochlorophyllide (Pchlide) b is an abundant pigment in barley etioplasts but is rather unstable, as it is rapidly converted to Pchlide a by 7-formyl reductase during pigment extraction with conventional 80% acetone (Reinbothe, S., Pollmann, S., and Reinbothe, C. (2003) J. Biol. Chem. 278, 800-806). It has also been claimed that extraction of barley etioplasts with 100% acetone containing 0.1% diethyl pyrocarbonate prevents the conversion of Pchlide b to Pchlide a and leads to the detection of large amounts of Pchlide b in the isolated etioplasts. In this work the extraction protocol of Reinbothe et al. is compared with the more conventional 80% aqueous acetone extraction method. No Pchlide b was detected either in etiolated barley leaves or isolated barley etioplasts irrespective of the extraction protocol. On the other hands, small amounts of Pchlide b were detected in green barley leaves and isolated chloroplasts, extracted either with 80% acetone or 100% acetone containing 0.1% diethyl pyrocarbonate. It is concluded that the proposed occurrence of a light-harvesting POR-Pchlide-a,b complex in etiolated plant tissues is untenable, and its ensuing consequences and implications, for the greening process, are irrelevant.


Subject(s)
Chloroplasts/metabolism , Protochlorophyllide/chemistry , Acetone/chemistry , Acetone/pharmacology , Chlorophyll/chemistry , Diethyl Pyrocarbonate/pharmacology , Hordeum/metabolism , Light , Photobiology , Pigments, Biological/chemistry , Plant Leaves/chemistry , Plant Physiological Phenomena , Plant Proteins/chemistry , Plastids/chemistry , Spectrometry, Fluorescence
16.
Photochem Photobiol ; 78(2): 184-96, 2003 Aug.
Article in English | MEDLINE | ID: mdl-12945588

ABSTRACT

The thorough understanding of photosynthetic membrane assembly requires a deeper knowledge of the coordination of chlorophyll (Chl) and thylakoid apoprotein biosynthesis. As a working model for future investigations, we have proposed three Chl-thylakoid apoprotein biosynthesis models, namely, a single-branched Chl biosynthetic pathway (SBP) single-location model, an SBP multilocation model and a multibranched Chl biosynthetic pathway (MBP) sublocation model. Rejection or validation of these models can be probed by determination of resonance excitation energy transfer between various tetrapyrrole intermediates of the Chl biosynthetic pathway and various thylakoid Chl-protein complexes. In this study we describe the detection of resonance energy transfer between protoporphyrin IX (Proto), Mg-Proto and its monomethyl ester (Mp(e)) and divinyl and monovinyl protochlorophyllide a (Pchlide a) and several Chl-protein complexes. Induction of various amounts of tetrapyrrole accumulation in green photoperiodically grown cucumber cotyledons and barley leaves was achieved by dark incubation of excised tissues with delta-aminolevulinic acid (ALA) and various concentrations of 2,2'-dipyridyl for various periods of time. Controls were incubated in distilled water. After plastid isolation, treated and control plastids were diluted in buffered glycerol to the same Chl concentration. Excitation spectra were then recorded at 77 K at emission maxima of about 686, 694 and 738 nm. Resonance excitation energy transfer from Proto, Mp(e) and Pchlide a to Chl-protein complexes emitting at 686, 694 and 738 nm was observed by calculation of treated minus control difference excitation spectra. The occurrence of resonance excitation energy transfer between anabolic tetrapyrroles and Chl-protein complexes appeared as well-defined excitation bands with excitation maxima corresponding to those of Proto, Mp(e) and Pchlide a. Furthermore, it appeared that resonance excitation energy transfer from multiple short-wavelength, medium-wavelength and long-wavelength Proto, Mp(e) and Chlide a sites to various Chl-protein complexes took place. Because resonance excitation transfer from donors to acceptors cannot take place at distances larger than 100 A, it is proposed that the observed resonance excitation energy transfers are not compatible with the SBP single-location Chl biosynthesis thylakoid membrane biogenesis model. The latter assumes that a single-branched Chl biosynthetic pathway located in the center of a 450 x 130 A photosynthetic unit generates all of the Chl needed for the assembly of all Chl-protein complexes.


Subject(s)
Chlorophyll/biosynthesis , Chloroplasts/physiology , Chlorophyll A , Cucumis sativus/metabolism , Edible Grain/metabolism , Energy Transfer , Hordeum/metabolism , Spectrometry, Fluorescence
SELECTION OF CITATIONS
SEARCH DETAIL
...