Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
EMBO J ; 34(4): 544-58, 2015 Feb 12.
Article in English | MEDLINE | ID: mdl-25568310

ABSTRACT

The interconnection between transcription and splicing is a subject of intense study. We report that Arabidopsis homologue of spliceosome disassembly factor NTR1 is required for correct expression and splicing of DOG1, a regulator of seed dormancy. Global splicing analysis in atntr1 mutants revealed a bias for downstream 5' and 3' splice site selection and an enhanced rate of exon skipping. A local reduction in PolII occupancy at misspliced exons and introns in atntr1 mutants suggests that directionality in splice site selection is a manifestation of fast PolII elongation kinetics. In agreement with this model, we found AtNTR1 to bind target genes and co-localise with PolII. A minigene analysis further confirmed that strong alternative splice sites constitute an AtNTR1-dependent transcriptional roadblock. Plants deficient in PolII endonucleolytic cleavage showed opposite effects for splice site choice and PolII occupancy compared to atntr1 mutants, and inhibition of PolII elongation or endonucleolytic cleavage in atntr1 mutant resulted in partial reversal of splicing defects. We propose that AtNTR1 is part of a transcription elongation checkpoint at alternative exons in Arabidopsis.


Subject(s)
Arabidopsis/genetics , Arabidopsis/metabolism , Exons/genetics , Periplasmic Binding Proteins/metabolism , RNA Splice Sites/genetics , Mutation , Periplasmic Binding Proteins/genetics , Transcription, Genetic/genetics
2.
Chromosoma ; 121(1): 37-48, 2012 Feb.
Article in English | MEDLINE | ID: mdl-21909692

ABSTRACT

In microsporocytes of the European larch, we demonstrated the presence of several mRNAs in spherical nuclear bodies. In the nuclei of microsporocytes, we observed up to 12 bodies, ranging from 0.5 to 6 µm in diameter, during the prophase of the first meiotic division. Our previous studies revealed the presence of polyadenylated RNA (poly(A) RNA) in these bodies, but did not confirm the presence of nascent transcripts or splicing factors of the SR family. The lack of these molecules precludes the bodies from being the sites of synthesis and early maturation of primary transcripts (Kolowerzo et al., Protoplasma 236:13-19, 2009). However, the bodies serve as sites for the accumulation of splicing machinery, including the Sm proteins and small nuclear RNAs. Characteristic ultrastructures and the molecular composition of the nuclear bodies, which contain poly(A) RNA, are indicative of Cajal bodies (CBs). Here, we demonstrated the presence of several housekeeping gene transcripts--α-tubulin, pectin methylesterase, peroxidase and catalase, ATPase, and inositol-3-phosphate synthase--in CBs. Additionally, we observed transcripts of the RNA polymerase II subunits RPB2 and RPB10 RNA pol II and the core spliceosome proteins mRNA SmD1, SmD2, and SmE. The co-localization of nascent transcripts and mRNAs indicates that mRNA accumulation/storage, particularly in CBs, occurs in the nucleus of microsporocytes.


Subject(s)
Coiled Bodies/metabolism , Larix/genetics , Larix/metabolism , Meiotic Prophase I/genetics , RNA, Messenger/metabolism , Spores/genetics , Coiled Bodies/genetics , Gametogenesis, Plant/genetics , Gene Expression Regulation, Plant , Immunohistochemistry , In Situ Hybridization, Fluorescence , Larix/ultrastructure , Meiotic Prophase I/physiology , Microscopy, Electron , Spores/metabolism , Spores/ultrastructure
3.
Protoplasma ; 236(1-4): 13-9, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19415452

ABSTRACT

In European larch microsporocytes, spherical structures 0.5 to 6 microm in diameter are present in which poly(A) RNA accumulates. There were one to several bodies per cell and they were often present in the vicinity of the nucleolus. No nascent transcripts were observed within them. Splicing factors of the SR family, including protein SC35, which participates in bringing the 3' and 5' sites closer in the splicing reaction, were also not observed. The absence of the above-mentioned elements within bodies containing poly(A) RNA disqualifies them as sites of synthesis and preliminary stages of primary transcript maturation. However, they contained abundant elements of the splicing machinery commonly occurring in Cajal bodies, i.e., Sm proteins or small nuclear RNA (snRNA). The molecular composition as well as the characteristic ultrastructure of bodies containing poly(A) RNA proves that these were Cajal bodies. This is the first report of such poly(A) RNA localization.


Subject(s)
Coiled Bodies/metabolism , Larix/metabolism , Poly A/chemistry , RNA/metabolism , In Situ Hybridization, Fluorescence , RNA/chemistry , Ribonucleoproteins, Small Nuclear/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...