Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Epigenetics ; 16(1): 65, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38741114

ABSTRACT

OBJECTIVE: Youth-onset type 2 diabetes (T2D) is physiologically distinct from adult-onset, but it is not clear how the two diseases differ at a molecular level. In utero exposure to maternal type 2 diabetes (T2D) is known to be a specific risk factor for youth-onset T2D. DNA methylation (DNAm) changes associated with T2D but which differ between youth- and adult-onset might delineate the impacts of T2D development at different ages and could also determine the contribution of exposure to in utero diabetes. METHODS: We performed an epigenome-wide analysis of DNAm on whole blood from 218 youth with T2D and 77 normoglycemic controls from the iCARE (improving renal Complications in Adolescents with type 2 diabetes through REsearch) cohort. Associations were tested using multiple linear regression models while adjusting for maternal diabetes, sex, age, BMI, smoking status, second-hand smoking exposure, cell-type proportions and genetic ancestry. RESULTS: We identified 3830 differentially methylated sites associated with youth T2D onset, of which 3794 were moderately (adjusted p-value < 0.05 and effect size estimate > 0.01) associated and 36 were strongly (adjusted p-value < 0.05 and effect size estimate > 0.05) associated. A total of 3725 of these sites were not previously reported in the EWAS Atlas as associated with T2D, adult obesity or youth obesity. Moreover, three CpGs associated with youth-onset T2D in the PFKFB3 gene were also associated with maternal T2D exposure (FDR < 0.05 and effect size > 0.01). This is the first study to link PFKFB3 and T2D in youth. CONCLUSION: Our findings support that T2D in youth has different impacts on DNAm than adult-onset, and suggests that changes in DNAm could provide an important link between in utero exposure to maternal diabetes and the onset of T2D.


Subject(s)
DNA Methylation , Diabetes Mellitus, Type 2 , Prenatal Exposure Delayed Effects , Humans , Diabetes Mellitus, Type 2/genetics , Female , DNA Methylation/genetics , Pregnancy , Adolescent , Male , Prenatal Exposure Delayed Effects/genetics , Epigenesis, Genetic/genetics , Age of Onset , Child , Case-Control Studies , Diabetes, Gestational/genetics , Adult , Epigenome/genetics
2.
Microbiol Spectr ; : e0016324, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38757955

ABSTRACT

Post-market surveillance of test performance is a critical function of public health agencies and clinical researchers that ensures tests maintaining diagnostic characteristics following their regulatory approval. Changes in product quality, manufacturing processes over time, or the evolution of new variants may impact product performance. During the COVID-19 pandemic, a plethora of point-of-care tests (POCTs) was released onto the Canadian market. This study evaluated the performance characteristics of several of the most widely distributed POCTs in Canada, including four rapid antigen tests (Abbott Panbio, BTNX Rapid Response, SD Biosensor, and Quidel QuickVue) and two molecular tests (Abbott ID NOW and Lucira Check IT). All tests were challenged with 149 SARS-CoV-2 clinical positives, including multiple variants up to and including Omicron XBB.1.5, as well as 29 clinical negatives. Results were stratified based on whether the isolate was Omicron or pre-Omicron as well as by reverse transcriptase quantitative PCR Ct value. The test performance of each POCT was consistent with the manufacturers' claims and showed no significant decline in clinical performance against any of the variants tested. These findings provide continued confidence in the results of these POCTs as they continue to be used to support decentralized COVID-19 testing. This work demonstrates the essential role of post-market surveillance in ensuring reliability in diagnostic tools.IMPORTANCEPost-market surveillance of diagnostic test performance is critical to ensure their reliability after regulatory approval. This is especially critical in the context of the COVID-19 pandemic as the use of point-of-care tests (POCTs) became widespread. Our study focused on four rapid antigen tests (Abbott Panbio, BTNX Rapid Response, SD Biosensor, and Quidel QuickVue) and two molecular tests (Abbott ID NOW and Lucira Check IT) that were widely distributed across Canada, assessing their performance using many SARS-CoV-2 variants, including up to Omicron subvariant XBB.1.5. Overall, we found no significant difference in performance against any variant, reinforcing confidence in their use. As concerns in test efficacy have been raised by news outlets, particularly regarding the BTNX Rapid Response, this work is even more timely and crucial. Our research offers insights into the performance of widely used COVID-19 POCTs but also highlights the necessity for post-market surveillance.

3.
J Allergy Clin Immunol Glob ; 2(4): 100130, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37781669

ABSTRACT

Background: In the first year of life, DNA methylation (DNAm) patterns are established and are particularly susceptible to exposure-induced changes. Some of these changes may leave lasting effects by persistently altering gene expression or cell type composition or function, contributing to disease. Objectives: In this discovery study, we investigated DNAm associations with sensitization to peanut, egg, or cow's milk and hypothesized that genes demonstrating DNAm differences in immune cells may play a role in the development of food sensitization. Methods: Infant sensitization (a skin prick test wheal size that is at least 2 mm greater than the negative control) was measured to peanut, egg, and cow's milk at age 1 year, and ages of food introduction were reported prospectively. PBMC DNAm was measured in blood samples at 1 year in 144 infants, oversampled for atopy or wheeze. Statistical analysis of Illumina 450k array DNAm data was conducted in R with adjustment for clinical and genetic covariables and a minimum effect size of 1%, false discovery rate of 5%, and medium-confidence false discovery rate threshold of 20%. Results: There were no DNAm differences between infants with and without peanut, egg, or cow's milk sensitization. Borderline significant sites with high effect sizes were enriched for methylation quantitative trait loci, hinting at genetic factors influencing DNAm at these sites. DNAm patterns did not differ by peanut or egg introduction before or after 12 months. Conclusion: This small pilot study did not show differences in methylation by food sensitization or introduction, but it did demonstrate DNAm patterns linked to genetic variants.

4.
Can J Microbiol ; 69(3): 146-150, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36657122

ABSTRACT

The GeneXpert® Xpert® Xpress SARS-CoV-2/Flu/RSV PLUS combination test (PLUS assay) received Health Canada approval in January 2022. The PLUS assay is similar to the SARS-CoV-2/Flu/RSV combination test, with modifications to improve assay robustness against circulating and emerging variants. The performance characteristics of the PLUS assay were assessed at the Lakeridge Health Oshawa Hospital Centre and the National Microbiology Laboratory of Canada. The PLUS assay was directly compared to the SARS-CoV-2/Flu/RSV combination test using SARS-CoV-2 culture from five variants and remnant clinical specimens collected across the coronavirus disease 2019 pandemic. This included 50 clinical specimens negative for all pathogens, 110 clinical specimens positive for SARS-CoV-2, influenza A, influenza B, RSVA, and(or) RSVB and an additional 11 mixed samples to screen for target interactions. The PLUS assay showed a high % agreement with the widely used SARS-CoV-2/Flu/RSV combination test. Based on these findings, the PLUS assay and the Xpert SARS-CoV-2/Flu/RSV combination test results are largely consistent with no observed difference in sensitivity, specificity, or time to result when challenged with various SARS-CoV-2 variants. The reported cycle threshold (Ct) values provided by the new PLUS assay were also unchanged, with the exception of a possible 1-2 decrease reported in Ct for RSVA across a limited sample size.


Subject(s)
COVID-19 , Influenza A virus , Influenza, Human , Humans , Influenza, Human/diagnosis , SARS-CoV-2/genetics , COVID-19/diagnosis , Influenza B virus/genetics , Nasopharynx , Molecular Diagnostic Techniques/methods , Influenza A virus/genetics , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...