Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 74
Filter
Add more filters










Publication year range
1.
Front Genet ; 15: 1333964, 2024.
Article in English | MEDLINE | ID: mdl-38322025

ABSTRACT

Introduction: Cannabis sativa is utilized mainly for palliative care worldwide. Ovarian cancer (OC) is a lethal gynecologic cancer. A particular cannabis extract fraction ('F7') and the Poly(ADP-Ribose) Polymerase 1 (PARP1) inhibitor niraparib act synergistically to promote OC cell apoptosis. Here we identified genetic pathways that are altered by the synergistic treatment in OC cell lines Caov3 and OVCAR3. Materials and methods: Gene expression profiles were determined by RNA sequencing and quantitative PCR. Microscopy was used to determine actin arrangement, a scratch assay to determine cell migration and flow cytometry to determine apoptosis, cell cycle and aldehyde dehydrogenase (ALDH) activity. Western blotting was used to determine protein levels. Results: Gene expression results suggested variations in gene expression between the two cell lines examined. Multiple genetic pathways, including Hippo/Wnt, TGF-ß/Activin and MAPK were enriched with genes differentially expressed by niraparib and/or F7 treatments in both cell lines. Niraparib + F7 treatment led to cell cycle arrest and endoplasmic reticulum (ER) stress, inhibited cell migration, reduced the % of ALDH positive cells in the population and enhanced PARP1 cleavage. Conclusion: The synergistic effect of the niraparib + F7 may result from the treatment affecting multiple genetic pathways involving cell death and reducing mesenchymal characteristics.

2.
J Vis Exp ; (195)2023 05 12.
Article in English | MEDLINE | ID: mdl-37246866

ABSTRACT

This paper presents a protocol for the convenient and high-throughput isolation and enrichment of glandular capitate stalked and sessile trichomes from Cannabis sativa. The biosynthetic pathways for cannabinoid and volatile terpene metabolism are localized primarily in the Cannabis trichomes, and isolated trichomes are beneficial for transcriptome analysis. The existing protocols for isolating glandular trichomes for transcriptomic characterization are inconvenient and deliver compromised trichome heads and a relatively low amount of isolated trichomes. Furthermore, they rely on expensive apparatus and isolation media containing protein inhibitors to avoid RNA degradation. The present protocol suggests combining three individual modifications to obtain a large amount of isolated glandular capitate stalked and sessile trichomes from C. sativa mature female inflorescences and fan leaves, respectively. The first modification involves substituting liquid nitrogen for the conventional isolation medium to facilitate the passage of trichomes through the micro-sieves. The second modification involves using dry ice to detach the trichomes from the plant source. The third modification involves passing the plant material consecutively through five micro-sieves of diminishing pore sizes. Microscopic imaging demonstrated the effectiveness of the isolation technique for both trichome types. In addition, the quality of RNA extracted from the isolated trichomes was appropriate for downstream transcriptomic analysis.


Subject(s)
Cannabinoids , Cannabis , Cannabis/genetics , Cannabis/metabolism , Trichomes/genetics , Trichomes/metabolism , Cannabinoids/metabolism , Plant Leaves/metabolism , Upper Extremity
3.
Pharmaceuticals (Basel) ; 15(12)2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36559009

ABSTRACT

Lung inflammation is associated with elevated pro-inflammatory cytokines and chemokines. Treatment with FCBD:std (standard mix of cannabidiol [CBD], cannabigerol [CBG] and tetrahydrocannabivarin [THCV]) leads to a marked reduction in the inflammation of alveolar epithelial cells, but not in macrophages. In the present study, the combined anti-inflammatory effect of FCBD:std with two corticosteroids (dexamethasone and budesonide) and two non-steroidal anti-inflammatory drugs (NSAID; ibuprofen and diclofenac), was examined. Enzyme-linked immunosorbent assay (ELISA) was used to determine protein levels. Gene expression was determined by quantitative real-time PCR. Inhibition of cyclo-oxygenase (COX) activity was determined in vitro. FCBD:std and diclofenac act synergistically, reducing IL-8 levels in macrophages and lung epithelial cells. FCBD:std plus diclofenac also reduced IL-6, IL-8 and CCL2 expression levels in co-cultures of macrophages and lung epithelial cells, in 2D and 3D models. Treatment by FCBD:std and/or NSAID reduced COX-1 and COX-2 gene expression but not their enzymatic activity. FCBD:std and diclofenac exhibit synergistic anti-inflammatory effects on macrophages and lung epithelial cells, yet this combined activity needs to be examined in pre-clinical studies and clinical trials.

4.
Molecules ; 27(21)2022 Nov 03.
Article in English | MEDLINE | ID: mdl-36364346

ABSTRACT

Ovarian cancer (OC) is the single most lethal gynecologic malignancy. Cannabis sativa is used to treat various medical conditions, and is cytotoxic to a variety of cancer types. We sought to examine the effectiveness of different combinations of cannabis compounds against OC. Cytotoxic activity was determined by XTT assay on HTB75 and HTB161 cell lines. Apoptosis was determined by flow cytometry. Gene expression was determined by quantitative PCR and protein localization by confocal microscopy. The two most active fractions, F5 and F7, from a high Δ9-tetrahydrocannabinol (THC) cannabis strain extract, and their standard mix (SM), showed cytotoxic activity against OC cells and induced cell apoptosis. The most effective phytocannabinoid combination was THC+cannabichromene (CBC)+cannabigerol (CBG). These fractions acted in synergy with niraparib, a PARP inhibitor, and were ~50-fold more cytotoxic to OC cells than to normal keratinocytes. The F7 and/or niraparib treatments altered Wnt pathway-related gene expression, epithelial-mesenchymal transition (EMT) phenotype and ß-catenin cellular localization. The niraparib+F7 treatment was also effective on an OC patient's cells. Given the fact that combinations of cannabis compounds and niraparib act in synergy and alter the Wnt signaling pathway, these phytocannabinoids should be examined as effective OC treatments in further pre-clinical studies and clinical trials.


Subject(s)
Cannabis , Hallucinogens , Ovarian Neoplasms , Female , Humans , Wnt Signaling Pathway/genetics , Dronabinol/pharmacology , Carcinoma, Ovarian Epithelial , Ovarian Neoplasms/drug therapy , Cannabinoid Receptor Agonists , Poly (ADP-Ribose) Polymerase-1
5.
Cancers (Basel) ; 14(17)2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36077833

ABSTRACT

Ovarian cancer (OC) is the most lethal gynecological malignancy, with about 70% of cases diagnosed only at an advanced stage. Cannabis sativa, which produces more than 150 phytocannabinoids, is used worldwide to alleviate numerous symptoms associated with various medical conditions. Recently, studies across a range of cancer types have demonstrated that the phytocannabinoids Δ9-trans-tetrahydrocannabinol (THC) and cannabidiol (CBD) have anti-cancer activity in vitro and in vivo, but also the potential to increase other drugs' adverse effects. THC and CBD act via several different biological and signaling pathways, including receptor-dependent and receptor-independent pathways. However, very few studies have examined the effectiveness of cannabis compounds against OC. Moreover, little is known about the effectiveness of cannabis compounds against cancer stem cells (CSCs) in general and OC stem cells (OCSCs) in particular. CSCs have been implicated in tumor initiation, progression, and invasion, as well as tumor recurrence, metastasis, and drug resistance. Several hallmarks and concepts describe CSCs. OCSCs, too, are characterized by several markers and specific drug-resistance mechanisms. While there is no peer-reviewed information regarding the effect of cannabis and cannabis compounds on OCSC viability or development, cannabis compounds have been shown to affect genetic pathways and biological processes related to CSCs and OCSCs. Based on evidence from other cancer-type studies, the use of phytocannabinoid-based treatments to disrupt CSC homeostasis is suggested as a potential intervention to prevent chemotherapy resistance. The potential benefits of the combination of chemotherapy with phytocannabinoid treatment should be examined in ovarian cancer patients.

6.
Front Pharmacol ; 13: 908198, 2022.
Article in English | MEDLINE | ID: mdl-35614947

ABSTRACT

Inflammation often develops from acute, chronic, or auto-inflammatory disorders that can lead to compromised organ function. Cannabis (Cannabis sativa) has been used to treat inflammation for millennia, but its use in modern medicine is hampered by a lack of scientific knowledge. Previous studies report that cannabis extracts and inflorescence inhibit inflammatory responses in vitro and in pre-clinical and clinical trials. The endocannabinoid system (ECS) is a modulator of immune system activity, and dysregulation of this system is involved in various chronic inflammations. This system includes cannabinoid receptor types 1 and 2 (CB1 and CB2), arachidonic acid-derived endocannabinoids, and enzymes involved in endocannabinoid metabolism. Cannabis produces a large number of phytocannabinoids and numerous other biomolecules such as terpenes and flavonoids. In multiple experimental models, both in vitro and in vivo, several phytocannabinoids, including Δ9-tetrahydrocannabinol (THC), cannabidiol (CBD) and cannabigerol (CBG), exhibit activity against inflammation. These phytocannabinoids may bind to ECS and/or other receptors and ameliorate various inflammatory-related diseases by activating several signaling pathways. Synergy between phytocannabinoids, as well as between phytocannabinoids and terpenes, has been demonstrated. Cannabis activity can be improved by selecting the most active plant ingredients (API) while eliminating parts of the whole extract. Moreover, in the future cannabis components might be combined with pharmaceutical drugs to reduce inflammation.

7.
Biomolecules ; 12(4)2022 03 24.
Article in English | MEDLINE | ID: mdl-35454080

ABSTRACT

Cancer is a complex family of diseases affecting millions of people worldwide. Gliomas are primary brain tumors that account for ~80% of all malignant brain tumors. Glioblastoma multiforme (GBM) is the most common, invasive, and lethal subtype of glioma. Therapy resistance and intra-GBM tumoral heterogeneity are promoted by subpopulations of glioma stem cells (GSCs). Cannabis sativa produces hundreds of secondary metabolites, such as flavonoids, terpenes, and phytocannabinoids. Around 160 phytocannabinoids have been identified in C. sativa. Cannabis is commonly used to treat various medical conditions, and it is used in the palliative care of cancer patients. The anti-cancer properties of cannabis compounds include cytotoxic, anti-proliferative, and anti-migratory activities on cancer cells and cancer stem cells. The endocannabinoids system is widely distributed in the body, and its dysregulation is associated with different diseases, including various types of cancer. Anti-cancer activities of phytocannabinoids are mediated in glioma cells, at least partially, by the endocannabinoid receptors, triggering various cellular signaling pathways, including the endoplasmic reticulum (ER) stress pathway. Specific combinations of multiple phytocannabinoids act synergistically against cancer cells and may trigger different anti-cancer signaling pathways. Yet, due to scarcity of clinical trials, there remains no solid basis for the anti-cancer therapeutic potential of cannabis compounds.


Subject(s)
Antineoplastic Agents , Cannabinoids , Cannabis , Glioblastoma , Glioma , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cannabinoid Receptor Agonists/therapeutic use , Cannabinoids/pharmacology , Cannabinoids/therapeutic use , Endocannabinoids/pharmacology , Glioblastoma/drug therapy , Glioma/drug therapy , Humans , Neoplastic Stem Cells
8.
Sci Rep ; 11(1): 13973, 2021 07 07.
Article in English | MEDLINE | ID: mdl-34234177

ABSTRACT

Medical cannabis (MC) production is a rapidly expanding industry. Over the past ten years, many additional phytocannabinoids have been discovered and used for different purposes. MC was reported beneficial for the treatment of a variety of clinical conditions such as analgesia, multiple sclerosis, spinal cord injuries, Tourette's syndrome, epilepsy, glaucoma, Parkinson disease and more. Yet, there is still a major lack of research and knowledge related to MC plant diseases, both at the pre- and postharvest stages. Many of the fungi that infect MC, such as Aspergillus and Penicillium spp., are capable of producing mycotoxins that are carcinogenic, or otherwise harmful when consumed, and especially by those patients who suffer from a weakened immune system, causing invasive contamination in humans. Therefore, there are strict limits regarding the permitted levels of fungal colony forming units (CFU) in commercial MC inflorescences. Furthermore, the strict regulation on pesticide appliance application in MC cultivation exacerbates the problem. In order to meet the permitted CFU limit levels, there is a need for pesticide-free postharvest treatments relying on natural non-chemical methods. Thus, a decontamination approach is required that will not damage or significantly alter the chemical composition of the plant product. In this research, a new method for sterilization of MC inflorescences for reduction of fungal contaminantstes was assessed, without affecting the composition of plant secondary metabolites. Inflorescences were exposed to short pulses of steam (10, 15 and 20 s exposure) and CFU levels and plant chemical compositions, pre- and post-treatment, were evaluated. Steam treatments were very effective in reducing fungal colonization to below detection limits. The effect of these treatments on terpene profiles was minor, resulting mainly in the detection of certain terpenes that were not present in the untreated control. Steaming decreased cannabinoid concentrations as the treatment prolonged, although insignificantly. These results indicate that the steam sterilization method at the tested exposure periods was very effective in reducing CFU levels while preserving the initial molecular biochemical composition of the treated inflorescences.


Subject(s)
Cannabinoids , Fungi , Inflorescence/chemistry , Inflorescence/microbiology , Steam , Stem Cells , Sterilization , Terpenes , Cannabis , Disinfection , Drug Contamination , Sterilization/methods
9.
Colloids Surf B Biointerfaces ; 206: 111958, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34237526

ABSTRACT

A new formulation for biological pest control with significant UV protection capability has been developed in this research. The formulation is based on individual encapsulation of fungal conidia in an oil/water Pickering emulsion. The droplets size of the emulsions was tuned to meet the demands of single conidia encapsulation in the oil droplets. The emulsions are stabilized by amine-functionalized TiO2 (titania) nanoparticles (NPs). The droplet size, stability, and structure of the emulsions were investigated at different TiO2 contents and oil/water phase ratios. Most of the emulsions remained stable for 6 months. The structural properties of the Pickering emulsions were characterized by confocal microscopy and high-resolution cryogenic scanning electron microscopy (cryo-HRSEM). The presence of the TiO2 particles at the interface was confirmed by both confocal microscopy and cryo-HRSEM. Metarhizium brunneum-7 (Mb7) conidia were added to the emulsions. The successful encapsulation of individual conidia in the oil droplets was confirmed by confocal microscopy. The individual encapsulation of the conidia in the emulsions was significantly improved by dispersing the conidia in a 0.02 % Triton X-100 solution prior to emulsification. In addition, the bioassay results have shown, that exposure of the encapsulated conidia to natural UV light did not change their germination rates, however, the unprotected conidia demonstrated a dramatic decrease in their germination rates. These results confirm the UV protection capability of the studied emulsions.


Subject(s)
Nanoparticles , Ultraviolet Rays , Biological Control Agents , Cell Encapsulation , Emulsions , Metarhizium , Particle Size , Titanium
10.
Cancers (Basel) ; 13(7)2021 Apr 05.
Article in English | MEDLINE | ID: mdl-33916466

ABSTRACT

Glioblastoma multiforme (GBM) is the most lethal subtype of glioma. Cannabis sativa is used for the treatment of various medical conditions. Around 150 phytocannabinoids have been identified in C. sativa, among them Δ-9-tetrahydrocannabinol (THC) and cannabidiol (CBD) that trigger GBM cell death. However, the optimal combinations of cannabis molecules for anti-GBM activity are unknown. Chemical composition was determined using high-performance liquid chromatography (HPLC) and gas chromatography mass spectrometry (GC/MS). Cytotoxic activity was determined by XTT and lactate dehydrogenase (LDH) assays and apoptosis and cell cycle by fluorescence-activated cell sorting (FACS). F-actin structures were observed by confocal microscopy, gene expression by quantitative PCR, and cell migration and invasion by scratch and transwell assays, respectively. Fractions of a high-THC cannabis strain extract had significant cytotoxic activity against GBM cell lines and glioma stem cells derived from tumor specimens. A standard mix (SM) of the active fractions F4 and F5 induced apoptosis and expression of endoplasmic reticulum (ER)-stress associated-genes. F4 and F5 inhibited cell migration and invasion, altered cell cytoskeletons, and inhibited colony formation in 2 and 3-dimensional models. Combinations of cannabis compounds exert cytotoxic, anti-proliferative, and anti-migratory effects and should be examined for efficacy on GBM in pre-clinical studies and clinical trials.

11.
Sci Rep ; 11(1): 1462, 2021 01 14.
Article in English | MEDLINE | ID: mdl-33446817

ABSTRACT

Cannabis sativa is widely used for medical purposes and has anti-inflammatory activity. This study intended to examine the anti-inflammatory activity of cannabis on immune response markers associated with coronavirus disease 2019 (COVID-19) inflammation. An extract fraction from C. sativa Arbel strain (FCBD) substantially reduced (dose dependently) interleukin (IL)-6 and -8 levels in an alveolar epithelial (A549) cell line. FCBD contained cannabidiol (CBD), cannabigerol (CBG) and tetrahydrocannabivarin (THCV), and multiple terpenes. Treatments with FCBD and a FCBD formulation using phytocannabinoid standards (FCBD:std) reduced IL-6, IL-8, C-C Motif Chemokine Ligands (CCLs) 2 and 7, and angiotensin I converting enzyme 2 (ACE2) expression in the A549 cell line. Treatment with FCBD induced macrophage (differentiated KG1 cell line) polarization and phagocytosis in vitro, and increased CD36 and type II receptor for the Fc region of IgG (FcγRII) expression. FCBD treatment also substantially increased IL-6 and IL-8 expression in macrophages. FCBD:std, while maintaining anti-inflammatory activity in alveolar epithelial cells, led to reduced phagocytosis and pro-inflammatory IL secretion in macrophages in comparison to FCBD. The phytocannabinoid formulation may show superior activity versus the cannabis-derived fraction for reduction of lung inflammation, yet there is a need of caution proposing cannabis as treatment for COVID-19.


Subject(s)
Anti-Inflammatory Agents/pharmacology , COVID-19/immunology , Cannabinoids/pharmacology , Cannabis/chemistry , Epithelial Cells/immunology , Macrophages/immunology , Plant Extracts/pharmacology , SARS-CoV-2/immunology , A549 Cells , Angiotensin-Converting Enzyme 2/immunology , Anti-Inflammatory Agents/chemistry , COVID-19/pathology , Cannabinoids/chemistry , Cytokines/immunology , Epithelial Cells/pathology , Epithelial Cells/virology , Gene Expression Regulation/drug effects , Gene Expression Regulation/immunology , Humans , Macrophages/pathology , Macrophages/virology , Plant Extracts/chemistry , Receptors, IgG/immunology , COVID-19 Drug Treatment
12.
Molecules ; 26(2)2021 Jan 17.
Article in English | MEDLINE | ID: mdl-33477303

ABSTRACT

Cannabis sativa contains more than 500 constituents, yet the anticancer properties of the vast majority of cannabis compounds remains unknown. We aimed to identify cannabis compounds and their combinations presenting cytotoxicity against bladder urothelial carcinoma (UC), the most common urinary system cancer. An XTT assay was used to determine cytotoxic activity of C. sativa extracts on T24 and HBT-9 cell lines. Extract chemical content was identified by high-performance liquid chromatography (HPLC). Fluorescence-activated cell sorting (FACS) was used to determine apoptosis and cell cycle, using stained F-actin and nuclei. Scratch and transwell assays were used to determine cell migration and invasion, respectively. Gene expression was determined by quantitative Polymerase chain reaction (PCR). The most active decarboxylated extract fraction (F7) of high-cannabidiol (CBD) C. sativa was found to contain cannabichromene (CBC) and Δ9-tetrahydrocannabinol (THC). Synergistic interaction was demonstrated between CBC + THC whereas cannabinoid receptor (CB) type 1 and type 2 inverse agonists reduced cytotoxic activity. Treatments with CBC + THC or CBD led to cell cycle arrest and cell apoptosis. CBC + THC or CBD treatments inhibited cell migration and affected F-actin integrity. Identification of active plant ingredients (API) from cannabis that induce apoptosis and affect cell migration in UC cell lines forms a basis for pre-clinical trials for UC treatment.


Subject(s)
Cannabinoids , Cannabis/chemistry , Carcinoma , Cell Movement/drug effects , Cytoskeleton/metabolism , Cytotoxins , Dronabinol , Urothelium/metabolism , Cannabinoids/chemistry , Cannabinoids/pharmacology , Carcinoma/drug therapy , Carcinoma/metabolism , Carcinoma/pathology , Cytoskeleton/pathology , Cytotoxins/chemistry , Cytotoxins/pharmacology , Dronabinol/chemistry , Dronabinol/pharmacology , Humans , Urothelium/pathology
13.
Molecules ; 25(20)2020 Oct 20.
Article in English | MEDLINE | ID: mdl-33092255

ABSTRACT

Despite the surge in cannabis chemistry research and its biological and medical activity, only a few cannabis-based pharmaceutical-grade drugs have been developed and marketed to date. Not many of these drugs are Food and Drug Administration (FDA)-approved, and some are still going through regulation processes. Active compounds including cannabinergic compounds (i.e., molecules targeted to modulate the endocannabinoid system) or phytocannabinoid analogues (cannabinoids produced by the plant) may be developed into single-molecule drugs. However, since in many cases treatment with whole-plant extract (whether as a solvent extraction, galenic preparation, or crude oil) is preferred over treatment with a single purified molecule, some more recently developed cannabis-derived drugs contain several molecules. Different combinations of active plant ingredients (API) from cannabis with proven synergies may be identified and developed as drugs to treat different medical conditions. However, possible negative effects between cannabis compounds should also be considered, as well as the effect of the cannabis treatment on the endocannabinoid system. FDA registration of single, few, or multiple molecules as drugs is a challenging process, and certain considerations that should be reviewed in this process, including issues of drug-drug interactions, are also discussed here.


Subject(s)
Cannabis/chemistry , Endocannabinoids/therapeutic use , Medical Marijuana/therapeutic use , Plant Extracts/therapeutic use , Cannabinoids/chemistry , Cannabinoids/therapeutic use , Endocannabinoids/chemistry , Hallucinogens/chemistry , Hallucinogens/therapeutic use , Humans , Medical Marijuana/chemistry , Plant Extracts/chemistry , United States , United States Food and Drug Administration
14.
Plants (Basel) ; 9(9)2020 Aug 20.
Article in English | MEDLINE | ID: mdl-32825348

ABSTRACT

Emerging needs for diversifying human diet and to explore novel therapeutic procedures have led to increasing attempts to retrieve traditional nourishments and recruit beneficial wild plant species. Species of the genus Erodium (Geraniaceae) harbor medicinal indications and substances known from folklore and scientific research. Hairy stork's bill (Erodium crassifolium L'Hér), is a small hemicryptophyte that inhabits arid southeast Mediterranean regions. E. crassifolium is among the very few Geraniaceae species known to produce tubers. Traditional knowledge holds that the tubers are edible and used by Bedouin tribes. However, no scientific information was found regarding nutrition or medicinal properties of these tubers. The objectives of our project are to unravel potential nutritional and medicinal benefits of the tubers, conduct initial steps towards domestication and develop agricultural practices enhancing E. crassifolium tuber yield and quality. Tubers show high water content (90%), low caloric value (23 Kcal 100-1 g) and considerable contents of minerals and vitamins. In addition, the tubers contain significant amounts of catechins and epigallocatechin, polyphenolic compounds known for their antioxidative, anti-inflammatory and antiproliferative activities. Furthermore, in vitro experiments demonstrated significant anti-inflammatory effects on human cell cultures. E. crassifolium is highly responsive to environmental changes; fertigation (700 mm) increased tuber yield by 10-fold, compared to simulated wild conditions (50-200 mm). These results indicate a significant potential of E. crassifolium becoming a valuable crop species. Therefore, there is a need for continued efforts in domestication, including ecotype selection, breeding, development of suitable agricultural practices and further exploration of its medicinal benefits.

15.
Trends Plant Sci ; 25(10): 976-984, 2020 10.
Article in English | MEDLINE | ID: mdl-32417167

ABSTRACT

Cannabis has been used as a medicine for millennia. Crude extracts of cannabis inflorescence contain numerous phytomolecules, including phytocannabinoids, terpenes, and flavonoids. Combinations of phytomolecules have been recently established as superior to the use of single molecules in medical treatment owing to the 'entourage effect'. Two types of entourage effects are defined: 'intra-entourage', resulting from interactions among phytocannabinoids or terpenes, and 'inter-entourage', attributed to interactions between phytocannabinoids and terpenes. It is suggested that the phytomolecule assemblages found in cannabis chemovars today derive from selective breeding during ancient cultivation. We propose that the current cannabis chemotaxonomy should be redefined according to chemical content and medicinal activity. In parallel, combinations of phytomolecules that exhibit entourage activity should be explored further for future drug development.


Subject(s)
Cannabinoids , Cannabis , Domestication , Flavonoids , Terpenes
16.
Oncotarget ; 11(13): 1141-1156, 2020 Mar 31.
Article in English | MEDLINE | ID: mdl-32284791

ABSTRACT

Cannabis sativa produces hundreds of phytocannabinoids and terpenes. Mycosis fungoides (MF) is the most common type of cutaneous T-cell lymphoma (CTCL), characterized by patches, plaques and tumors. Sézary is a leukemic stage of CTCL presenting with erythroderma and the presence of neoplastic Sézary T-cells in peripheral blood. This study aimed to identify active compounds from whole cannabis extracts and their synergistic mixtures, and to assess respective cytotoxic activity against CTCL cells. Ethanol extracts of C. sativa were analyzed by high-performance liquid chromatography (HPLC) and gas chromatography/mass spectrometry (GC/MS). Cytotoxic activity was determined using the XTT assay on My-La and HuT-78 cell lines as well as peripheral blood lymphocytes from Sézary patients (SPBL). Annexin V assay and fluorescence-activated cell sorting (FACS) were used to determine apoptosis and cell cycle. RNA sequencing and quantitative PCR were used to determine gene expression. Active cannabis compounds presenting high cytotoxic activity on My-La and HuT-78 cell lines were identified in crude extract fractions designated S4 and S5, and their synergistic mixture was specified. This mixture induced cell cycle arrest and cell apoptosis; a relatively selective apoptosis was also recorded on the malignant CD4+CD26- SPBL cells. Significant cytotoxic activity of the corresponding mixture of pure phytocannabinoids further verified genuine interaction between S4 and S5. The gene expression profile was distinct in My-La and HuT-78 cells treated with the S4 and S5 synergistic mixture. We suggest that specifying formulations of synergistic active cannabis compounds and unraveling their modes of action may lead to new cannabis-based therapies.

17.
Curr Neuropharmacol ; 18(2): 87-96, 2020.
Article in English | MEDLINE | ID: mdl-31481004

ABSTRACT

Mood disorders are the most prevalent mental conditions encountered in psychiatric practice. Numerous patients suffering from mood disorders present with treatment-resistant forms of depression, co-morbid anxiety, other psychiatric disorders and bipolar disorders. Standardized essential oils (such as that of Lavender officinalis) have been shown to exert clinical efficacy in treating anxiety disorders. As endocannabinoids are suggested to play an important role in major depression, generalized anxiety and bipolar disorders, Cannabis sativa was suggested for their treatment. The endocannabinoid system is widely distributed throughout the body including the brain, modulating many functions. It is involved in mood and related disorders, and its activity may be modified by exogenous cannabinoids. CB1 and CB2 receptors primarily serve as the binding sites for endocannabinoids as well as for phytocannabinoids, produced by cannabis inflorescences. However, 'cannabis' is not a single compound product but is known for its complicated molecular profile, producing a plethora of phytocannabinoids alongside a vast array of terpenes. Thus, the "entourage effect" is the suggested positive contribution derived from the addition of terpenes to cannabinoids. Here, we review the literature on the effects of cannabinoids and discuss the possibility of enhancing cannabinoid activity on psychiatric symptoms by the addition of terpenes and terpenoids. Possible underlying mechanisms for the anti-depressant and anxiolytic effects are reviewed. These natural products may be an important potential source for new medications for the treatment of mood and anxiety disorders.


Subject(s)
Anxiety Disorders/drug therapy , Cannabinoids/pharmacology , Cannabinoids/therapeutic use , Mood Disorders/drug therapy , Terpenes/pharmacology , Terpenes/therapeutic use , Animals , Humans
18.
Molecules ; 24(17)2019 Aug 21.
Article in English | MEDLINE | ID: mdl-31438532

ABSTRACT

Mixtures of different Cannabis sativa phytocannabinoids are more active biologically than single phytocannabinoids. However, cannabis terpenoids as potential instigators of phytocannabinoid activity have not yet been explored in detail. Terpenoid groups were statistically co-related to certain cannabis strains rich in Δ9-tetrahydrocannabinolic acid (THCA) or cannabidiolic acid (CBDA), and their ability to enhance the activity of decarboxylase phytocannabinoids (i.e., THC or CBD) was determined. Analytical HPLC and GC/MS were used to identify and quantify the secondary metabolites in 17 strains of C. sativa, and correlations between cannabinoids and terpenoids in each strain were determined. Column separation was used to separate and collect the compounds, and cell viability assay was used to assess biological activity. We found that in "high THC" or "high CBD" strains, phytocannabinoids are produced alongside certain sets of terpenoids. Only co-related terpenoids enhanced the cytotoxic activity of phytocannabinoids on MDA-MB-231 and HCT-116 cell lines. This was found to be most effective in natural ratios found in extracts of cannabis inflorescence. The correlation in a particular strain between THCA or CBDA and a certain set of terpenoids, and the partial specificity in interaction may have influenced the cultivation of cannabis and may have implications for therapeutic treatments.


Subject(s)
Cannabinoids/pharmacology , Cannabis/chemistry , Terpenes/pharmacology , Cannabinoids/chemistry , Carboxy-Lyases/metabolism , Cell Line, Tumor , Cell Survival/drug effects , Chromatography, High Pressure Liquid , Gas Chromatography-Mass Spectrometry , HCT116 Cells , Humans , Terpenes/chemistry
19.
Eur J Pharm Sci ; 132: 118-120, 2019 Apr 30.
Article in English | MEDLINE | ID: mdl-30851400

ABSTRACT

Cannabis sativa is widely used for medical purposes. However, to date, aroma, popular strain name or the content of two phytocannabinoids-Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD) are mostly considered for therapeutic activity. This is despite the hundreds of compounds in this plant and their potential synergistic interactions in mixtures. New, specific and effective cannabis-based drugs must be developed to achieve adequate medical standards for the use of cannabis. To do this, the comprehensive molecular profile of cannabis-based drugs must be defined, and mixtures of compounds should be tested for superior therapeutic activity due to synergistic effects compared to individually isolated cannabis compounds. The biological pathways targeted by these new drugs should also be characterized more accurately. For drug development and design, absorption, distribution, metabolism and elimination versus toxicity (ADME/Tox) must be characterized, and therapeutic doses identified. Promoting the quality and therapeutic activity of herbal or synthetic cannabis products to pharma grade is a pressing need worldwide.


Subject(s)
Cannabidiol/pharmacology , Cannabis/chemistry , Dronabinol/pharmacology , Drug Discovery/methods , Drug Discovery/trends , Medical Marijuana/pharmacology , Cannabidiol/isolation & purification , Dronabinol/isolation & purification , Medical Marijuana/isolation & purification
20.
Oncotarget ; 9(88): 35813-35829, 2018 Nov 09.
Article in English | MEDLINE | ID: mdl-30533197

ABSTRACT

Strigolactones (SLs) are carotenoid-derived plant hormones that exhibit anti-cancer activities. We previously demonstrated that two SL analogues, MEB55 and ST362, inhibit the growth and survival of various cancer cell lines. However, these compounds have low aqueous solubility and stability at physiological pH. Here, we generated SL-loaded glutathione/pH-responsive nanosponges (GSH/pH-NS) to selectively deliver SLs to prostate cancer cells and enhance their therapeutic efficacy. The SLs were readily incorporated into the GSH/pH-NS. The drug loading efficiency was 13.9% for MEB55 and 15.4% for ST362, and the encapsulation efficiency was 88.7% and 96.5%, respectively. Kinetic analysis revealed that release of MEB55 and ST362 from the GSH/pH-NS was accelerated at acidic pH and in the presence of a high GSH concentration. Evaluation of the effects of MEB55- and ST362-loaded GSH/pH-NS on the growth of DU145 (high GSH) and PC-3 (low GSH) prostate cancer cells revealed that the GSH/pH-NS inhibited the proliferation of DU145 cells to a greater extent than free MEB55 or ST362 over a range of concentrations. These findings indicate GSH/pH-NS are efficient tools for controlled delivery of SLs to prostate cancer cells and may enhance the therapeutic efficacy of these compounds.

SELECTION OF CITATIONS
SEARCH DETAIL
...