Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Colloid Interface Sci ; 261(1): 40-8, 2003 May 01.
Article in English | MEDLINE | ID: mdl-12725822

ABSTRACT

The adsorption isotherms onto a hydrophilic silica of mixtures of sodium dodecylsulfate (SDS) and of all the oligomers of a polydisperse nonylethylene glycol n-dodecyl ether (C(12)E(9)) surfactant were determined using a high-performance liquid chromatography (HPLC) technique. Incorporation of the anionic surfactant to the negatively charged silica surface is favored by the adsorption of the nonionic surfactant. Comparison between the adsorption isotherms of mixtures of SDS with a monodisperse C(12)E(9) and a polydisperse C(12)E(9) shows that the adsorption of SDS at the silica/water interface is stronger with the latter material than with the former in a large surface coverage domain. The composition of the surface aggregates and the variation of the oligomer distribution in these aggregates were determined. The previously described phenomena called self-desorption which was observed for the global C(12)E(9) and SDS surfactant mixtures was confirmed: increasing the total concentration at a fixed surfactant ratio induces at high concentration a desorption of the anionic surfactant and all of the less polar oligomers from the solid/water interface. An interpretation scheme is proposed which assumes that the interaction of SDS is larger with the less polar oligomers than with the polar ones. The self-desorption effect could then be considered as the consequence of the polydispersity of the nonionic surfactant and to the net repulsion interaction between SDS and the silica surface as the mole fraction of SDS in the surfactant mixture increases.


Subject(s)
Micelles , Silicon Dioxide/chemistry , Sodium Dodecyl Sulfate/chemistry , Surface-Active Agents/chemistry , Water/chemistry , Adsorption , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...