Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 10(10)2020 Sep 27.
Article in English | MEDLINE | ID: mdl-32992525

ABSTRACT

Copper-based composite materials strengthened with nanosized fullerene soot particles were produced by mechanical milling and hot pressing technology with a content of carbon up to 5 wt. %. The microstructure of the composite powders and the compacts prepared using them were examined by light microscopy, SEM, EDS, XRD, and XPS; hardness, heat conductivity, and tribological characteristics were measured. The interesting feature of the observed microstructure was a "marble" pattern formed by a white boundary net. The study shows homogeneous distribution of carbon inside the copper grains and its lower concentration in the grain boundaries. The effect was caused by a reaction of carbon with oxygen adsorbed by the copper particles surface. The maximal hardness of the material is 160 HB for the sample with 0.5 wt. % of fullerene soot; this material has the minimal friction coefficient (0.12) and wear in a dry friction condition. Heat conductivity of the material (Cu-0.5 wt. % C) is 288 W/m*K.

2.
Nanomaterials (Basel) ; 9(4)2019 Apr 04.
Article in English | MEDLINE | ID: mdl-30987292

ABSTRACT

Aluminum-based metallic matrix composites reinforced by carbon nanofibers (CNFs) are important precursors for development of new light and ultralight materials with enhanced properties and high specific characteristics. In the present work, powder metallurgy technique was applied for production of composites based on reinforcement of aluminum matrices by CNFs of different concentrations (0~2.5 wt%). CNFs were produced by chemical vapor deposition (CVD) and mechanical activation. We determined that in situ synthesis of carbon nanostructures with subsequent mechanic activation provides satisfactory distribution of nanofibers and homogeneous composite microstructure. Introduction of 1 vol% of flux (0.25 NaCl + 0.25 KCl + 0.5 CaF2) during mechanic activation helps to reduce the strength of the contacts between the particles. Additionally, better reinforcement of alumina particles and strengthening the bond between CNFs and aluminum are observed due to alumina film removal. Introduction of pure aluminum into mechanically alloyed powder provides the possibility to control composite durability, plasticity and thermal conductivity.

SELECTION OF CITATIONS
SEARCH DETAIL
...