Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters










Publication year range
1.
Environ Sci Technol ; 58(21): 9292-9302, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38752544

ABSTRACT

The fate of sulfonamide antibiotics in farmlands is crucial for food and ecological safety, yet it remains unclear. We used [phenyl-U-14C]-labeled sulfamethoxazole (14C-SMX) to quantitatively investigate the fate of SMX in a soil-maize system for 60 days, based on a six-pool fate model. Formation of nonextractable residues (NERs) was the predominant fate for SMX in unplanted soil, accompanied by minor mineralization. Notably, maize plants significantly increased SMX dissipation (kinetic constant kd = 0.30 day-1 vs 0.17 day-1), while substantially reducing the NER formation (92% vs 58% of initially applied SMX) and accumulating SMX (40%, mostly bound to roots). Significant NERs (maximal 29-42%) were formed via physicochemical entrapment (determined using silylation), which could partially be released and taken up by maize plants. The NERs consisted of a considerable amount of SMX formed via entrapment (1-8%) and alkali-hydrolyzable covalent bonds (2-12%, possibly amide linkage). Six and 10 transformation products were quantified in soil extracts and NERs, respectively, including products of hydroxyl substitution, deamination, and N-acylation, among which N-lactylated SMX was found for the first time. Our findings reveal the composition and instability of SMX-derived NERs in the soil-plant system and underscore the need to study the long-term impacts of reversible NERs.


Subject(s)
Soil Pollutants , Soil , Sulfamethoxazole , Zea mays , Soil/chemistry , Farms
2.
ISME J ; 18(1)2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38423526

ABSTRACT

Organic pollutants are an increasing threat for wildlife and humans. Managing their removal is however complicated by the difficulties in predicting degradation rates. In this work, we demonstrate that the complexity of the pollutant profile, the set of co-existing contaminants, is a major driver of biodegradation in wastewater. We built representative assemblages out of one to five common pharmaceuticals (caffeine, atenolol, paracetamol, ibuprofen, and enalapril) selected along a gradient of biodegradability. We followed their individual removal by wastewater microbial communities. The presence of multichemical background pollution was essential for the removal of recalcitrant molecules such as ibuprofen. High-order interactions between multiple pollutants drove removal efficiency. We explain these interactions by shifts in the microbiome, with degradable molecules such as paracetamol enriching species and pathways involved in the removal of several organic pollutants. We conclude that pollutants should be treated as part of a complex system, with emerging pollutants potentially showing cascading effects and offering leverage to promote bioremediation.


Subject(s)
Environmental Pollutants , Water Pollutants, Chemical , Humans , Wastewater , Ibuprofen , Acetaminophen , Water Pollutants, Chemical/metabolism , Biodegradation, Environmental , Pharmaceutical Preparations
3.
Appl Microbiol Biotechnol ; 107(17): 5545-5554, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37436483

ABSTRACT

Pharmaceuticals are of concern to our planet and health as they can accumulate in the environment. The impact of these biologically active compounds on ecosystems is hard to predict, and information on their biodegradation is necessary to establish sound risk assessment. Microbial communities are promising candidates for the biodegradation of pharmaceuticals such as ibuprofen, but little is known yet about their degradation capacity of multiple micropollutants at higher concentrations (100 mg/L). In this work, microbial communities were cultivated in lab-scale membrane bioreactors (MBRs) exposed to increasing concentrations of a mixture of six micropollutants (ibuprofen, diclofenac, enalapril, caffeine, atenolol, paracetamol). Key players of biodegradation were identified using a combinatorial approach of 16S rRNA sequencing and analytics. Microbial community structure changed with increasing pharmaceutical intake (from 1 to 100 mg/L) and reached a steady-state during incubation for 7 weeks on 100 mg/L. HPLC analysis revealed a fluctuating but significant degradation (30-100%) of five pollutants (caffeine, paracetamol, ibuprofen, atenolol, enalapril) by an established and stable microbial community mainly composed of Achromobacter, Cupriavidus, Pseudomonas and Leucobacter. By using the microbial community from MBR1 as inoculum for further batch culture experiments on single micropollutants (400 mg/L substrate, respectively), different active microbial consortia were obtained for each single micropollutant. Microbial genera potentially responsible for degradation of the respective micropollutant were identified, i.e. Pseudomonas sp. and Sphingobacterium sp. for ibuprofen, caffeine and paracetamol, Sphingomonas sp. for atenolol and Klebsiella sp. for enalapril. Our study demonstrates the feasibility of cultivating stable microbial communities capable of degrading simultaneously a mixture of highly concentrated pharmaceuticals in lab-scale MBRs and the identification of microbial genera potentially responsible for the degradation of specific pollutants. KEY POINTS: • Multiple pharmaceuticals were removed by stable microbial communities. • Microbial key players of five main pharmaceuticals were identified.


Subject(s)
Environmental Pollutants , Microbiota , Water Pollutants, Chemical , Ibuprofen/analysis , RNA, Ribosomal, 16S/genetics , Atenolol , Acetaminophen , Caffeine , Bioreactors/microbiology , Biodegradation, Environmental , Environmental Pollutants/analysis , Water Pollutants, Chemical/metabolism , Pharmaceutical Preparations
4.
Sheng Wu Gong Cheng Xue Bao ; 37(10): 3475-3486, 2021 Oct 25.
Article in Chinese | MEDLINE | ID: mdl-34708605

ABSTRACT

A plethora of organic pollutants such as pesticides, polycyclic and halogenated aromatic hydrocarbons, and emerging pollutants, such as flame retardants, is continuously being released into the environment. This poses a huge threat to the society in terms of environmental pollution, agricultural product quality, and general safety. Therefore, effective removal of organic pollutants from the environment has become an important challenge to be addressed. As a consequence of the recent and rapid developments in additive manufacturing, 3D bioprinting technology is playing an important role in the pharmaceutical industry. At the same time, an increasing number of microorganisms suitable for the production of biomaterials with complex structures and functions using 3D bioprinting technology, have been identified. This article briefly discusses the principles, advantages, and disadvantages of different 3D bioprinting technologies for pollutant removal. Furthermore, the feasibility and challenges of developing bioremediation technologies based on 3D bioprinting have also been discussed.


Subject(s)
Bioprinting , Environmental Pollutants , Biocompatible Materials , Biodegradation, Environmental , Technology , Tissue Engineering
5.
Appl Microbiol Biotechnol ; 104(24): 10389-10408, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33175245

ABSTRACT

Sulfonamides are the oldest class of synthetic antibiotics still in use in clinical and veterinary settings. The intensive utilization of sulfonamides has been leading to the widespread contamination of the environment with these xenobiotic compounds. Consequently, in addition to pathogens and commensals, also bacteria inhabiting a wide diversity of environmental compartments have been in contact with sulfonamides for almost 90 years. This review aims at giving an overview of the effect of sulfonamides on bacterial cells, including the strategies used by bacteria to cope with these bacteriostatic agents. These include mechanisms of antibiotic resistance, co-metabolic transformation, and partial or total mineralization of sulfonamides. Possible implications of these mechanisms on the ecosystems and dissemination of antibiotic resistance are also discussed. KEY POINTS: • Sulfonamides are widespread xenobiotic pollutants; • Target alteration is the main sulfonamide resistance mechanism observed in bacteria; • Sulfonamides can be modified, degraded, or used as nutrients by some bacteria.


Subject(s)
Ecosystem , Sulfonamides , Anti-Bacterial Agents/pharmacology , Bacteria , Biodegradation, Environmental , Drug Resistance, Microbial
6.
Environ Microbiol ; 22(7): 2463-2468, 2020 07.
Article in English | MEDLINE | ID: mdl-32286010

ABSTRACT

There are a multitude of resistance strategies that microbes can apply to avoid inhibition by antimicrobials. One of these strategies is the enzymatic modification of the antibiotic, in a process generally termed inactivation. Furthermore, some microorganisms may not be limited to the mere inactivation of the antimicrobial compounds. They can continue by further enzymatic degradation of the compounds' carbon backbone, taking nutritional and energetic advantage of the former antibiotic. This driving force to harness an additional food source in a complex environment adds another level of complexity to the reasonably well-understood process of antibiotic resistance proliferation on a single cell level: It brings bioprotection into play at the level of microbial community. Despite the possible implications of a resistant community in a host and a lurking antibiotic failure, knowledge of degradation pathways of antibiotics and their connections is scarce. Currently, it is limited to only a few families of antibiotics (e.g. ß-lactams and sulfonamides). In this article, we discuss the fluctuating nature of the relationship between antibiotic resistance and the biodegradation of antibiotics. This distinction mainly depends on the genetic background of the microbe, as general resistance genes can be recruited to function in a biodegradation pathway.


Subject(s)
Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Drug Resistance, Bacterial/physiology , Biodegradation, Environmental , Humans , Sulfonamides/metabolism , Sulfonamides/pharmacology , beta-Lactams/metabolism , beta-Lactams/pharmacology
7.
N Biotechnol ; 54: 34-51, 2020 Jan 25.
Article in English | MEDLINE | ID: mdl-31412299

ABSTRACT

History shows that the discovery of, and the resistance to, antibiotics go hand in hand. While knowledge of resistance mechanisms, their impact and distribution is vast, over the years, the topic of antibiotic degradation has often been overlooked and regarded as being discrete from the research on resistance. As a result, understanding of the degradation of antibiotics and the impact of antibiotic degraders on the environment and human health are, for most classes, neither thoroughly documented nor understood. Current information on the biodegradation of antibiotics is described in two review articles. This first part focuses on sulfonamides, trimethoprim, aminoglycosides, amphenicols and tetracyclines. Detailed metabolic and molecular aspects as well as the role of the degraders in natural microbial communities are discussed. An integrated analysis of the accumulated data indicates that appreciation of the interplay between resistance and degradation is quite fragmented, and closing this gap will require novel experimental approaches.


Subject(s)
Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacology , Drug Resistance, Microbial/drug effects , Animals , Anti-Bacterial Agents/analysis , Biodegradation, Environmental , Humans
8.
N Biotechnol ; 54: 13-27, 2020 Jan 25.
Article in English | MEDLINE | ID: mdl-31419608

ABSTRACT

Antibiotic residues are widespread in the environment and their presence is known to contribute to the propagation of antibiotic resistance. Nevertheless, knowledge on processes involved in their degradation is scattered. This second part of a two part review aims at compiling knowledge on the (bio-) degradation of antibiotics, focusing on ß-lactams, macrolides, quinolones and ionophores, as well as some less common classes. Detailed metabolic and molecular aspects are discussed, as well as the role of antibiotic degraders in natural microbial communities. This exercise led to the conclusion that among the classes analyzed, the majority of antibiotics are prone to microbial cleavage or transformation.


Subject(s)
Anti-Bacterial Agents/metabolism , Drug Resistance, Microbial , Animals , Anti-Bacterial Agents/analysis , Anti-Bacterial Agents/pharmacology , Biodegradation, Environmental , Drug Resistance, Microbial/drug effects , Humans
9.
BMC Genomics ; 20(1): 885, 2019 Nov 21.
Article in English | MEDLINE | ID: mdl-31752666

ABSTRACT

BACKGROUND: Microbial communities recurrently establish metabolic associations resulting in increased fitness and ability to perform complex tasks, such as xenobiotic degradation. In a previous study, we have described a sulfonamide-degrading consortium consisting of a novel low-abundant actinobacterium, named strain GP, and Achromobacter denitrificans PR1. However, we found that strain GP was unable to grow independently and could not be further purified. RESULTS: Previous studies suggested that strain GP might represent a new putative species within the Leucobacter genus (16S rRNA gene similarity < 97%). In this study, we found that average nucleotide identity (ANI) with other Leucobacter spp. ranged between 76.8 and 82.1%, further corroborating the affiliation of strain GP to a new provisional species. The average amino acid identity (AAI) and percentage of conserved genes (POCP) values were near the lower edge of the genus delimitation thresholds (65 and 55%, respectively). Phylogenetic analysis of core genes between strain GP and Leucobacter spp. corroborated these findings. Comparative genomic analysis indicates that strain GP may have lost genes related to tetrapyrrole biosynthesis and thiol transporters, both crucial for the correct assembly of cytochromes and aerobic growth. However, supplying exogenous heme and catalase was insufficient to abolish the dependent phenotype. The actinobacterium harbors at least two copies of a novel genetic element containing a sulfonamide monooxygenase (sadA) flanked by a single IS1380 family transposase. Additionally, two homologs of sadB (4-aminophenol monooxygenase) were identified in the metagenome-assembled draft genome of strain GP, but these were not located in the vicinity of sadA nor of mobile or integrative elements. CONCLUSIONS: Comparative genomics of the genus Leucobacter suggested the absence of some genes encoding for important metabolic traits in strain GP. Nevertheless, although media and culture conditions were tailored to supply its potential metabolic needs, these conditions were insufficient to isolate the PR1-dependent actinobacterium further. This study gives important insights regarding strain GP metabolism; however, gene expression and functional studies are necessary to characterize and further isolate strain GP. Based on our data, we propose to classify strain GP in a provisional new species within the genus Leucobacter, 'Candidatus Leucobacter sulfamidivorax'.


Subject(s)
Actinobacteria/classification , Actinomycetales/classification , Actinobacteria/genetics , Actinobacteria/metabolism , Actinomycetales/genetics , Genes, Bacterial , Genome, Bacterial , Genomics , Interspersed Repetitive Sequences , Metagenome , Microbial Consortia , Mixed Function Oxygenases/genetics , Phylogeny , Sulfonamides/metabolism , Synteny
10.
J Hazard Mater ; 375: 33-42, 2019 08 05.
Article in English | MEDLINE | ID: mdl-31039462

ABSTRACT

This work sheds light on the physicochemical changes of naturally weathered polymer surfaces along with changes of polymer buoyancy due to biofilm formation and degradation processes. To support the degradation hypothesis, a microcosm experiment was conducted where a mixture of naturally weathered plastic pieces was incubated with an indigenous pelagic community. A series of analyses were employed in order to describe the alteration of the physicochemical characteristics of the polymer (FTIR, SEC and GPC, sinking velocity) as well as the biofilm community (NGS). At the end of phase II, the fraction of double bonds in the surface of microbially treated PE films increased while changes were also observed in the profile of the PS films. The molecular weight of PE pieces increased with incubation time reaching the molecular weight of the virgin pieces (230,000 g mol-1) at month 5 but the buoyancy displayed no difference throughout the experimental period. The number-average molecular weight of PS pieces decreased (33% and 27% in INDG and BIOG treatment respectively), implying chain scission; accelerated (by more than 30%) sinking velocities compared to the initial weathered pieces were also measured for PS films with biofilm on their surface. The orders Rhodobacterales, Oceanospirillales and Burkholderiales dominated the distinct platisphere communities and the genera Bacillus and Pseudonocardia discriminate these assemblages from the planktonic counterpart. The functional analysis predicts overrepresentation of adhesive cells carrying xenobiotic and hydrocarbon degradation genes. Taking these into account, we can suggest that tailored marine consortia have the ability to thrive in the presence of mixtures of plastics and participate in their degradation.


Subject(s)
Microbial Consortia/physiology , Polyethylene/metabolism , Polystyrenes/metabolism , Seawater/microbiology , Bacteria/genetics , Bacteria/metabolism , Bacterial Physiological Phenomena , Biodegradation, Environmental , Biofilms , Plankton/physiology , Polyethylene/chemistry , Polystyrenes/chemistry , RNA, Ribosomal, 16S , Water Microbiology
11.
Appl Microbiol Biotechnol ; 102(23): 10299-10314, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30294753

ABSTRACT

In the last decade, biological degradation and mineralization of antibiotics have been increasingly reported feats of environmental bacteria. The most extensively described example is that of sulfonamides that can be degraded by several members of Actinobacteria and Proteobacteria. Previously, we reported sulfamethoxazole (SMX) degradation and partial mineralization by Achromobacter denitrificans strain PR1, isolated from activated sludge. However, further studies revealed an apparent instability of this metabolic trait in this strain. Here, we investigated this instability and describe the finding of a low-abundance and slow-growing actinobacterium, thriving only in co-culture with strain PR1. This organism, named GP, shared highest 16S rRNA gene sequence similarity (94.6-96.9%) with the type strains of validly described species of the genus Leucobacter. This microbial consortium was found to harbor a homolog to the sulfonamide monooxygenase gene (sadA) also found in other sulfonamide-degrading bacteria. This gene is overexpressed in the presence of the antibiotic, and evidence suggests that it codes for a group D flavin monooxygenase responsible for the ipso-hydroxylation of SMX. Additional side reactions were also detected comprising an NIH shift and a Baeyer-Villiger rearrangement, which indicate an inefficient biological transformation of these antibiotics in the environment. This work contributes to further our knowledge in the degradation of this ubiquitous micropollutant by environmental bacteria.


Subject(s)
Achromobacter denitrificans/metabolism , Actinobacteria/metabolism , Biodegradation, Environmental , Sulfamethoxazole/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cloning, Molecular , Gene Expression Regulation, Bacterial , Gene Library , Metagenomics , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Sewage/microbiology
12.
Int J Biol Macromol ; 116: 1049-1055, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29777804

ABSTRACT

The production of biopolyols (sustainable, renewable and biodegradable precursors), is exclusively focused on the conventional chemical synthesis pathways, and currently, no polyols are produced by enzymatic processes at an industrial scale, because they are not competitive when compared to petrochemically based polyols due to the overall cost for their production. This can be mainly attributed to the high costs of commercial enzymes used in this process and their use is limited by their lack of stability during the bioprocess. Immobilization of enzymes gives the opportunity to converge two important features of enzymes: to increase the protein stability and to reuse enzyme as a catalyst. By this study, we were aiming to explore alternatives to commercially available enzymes. We investigated an effective hydrolytic route from epoxidized oils to polyols by applying lipolytic enzymes from Yarrowia lipolytica and Candida cylindracea immobilized onto fumed silica nanoparticles (fsNP) and those immobilized by the formation of cross-linked enzyme aggregates (CLEAs). Oxirane ring hydrolysis of epoxidized rapeseed oil catalyzed by lipase-fsNP and CLEAs was investigated with respect to various parameters (temperature, pH, concentrations, time of sorption and cross-linking, etc.). The highest conversions for oxirane ring hydrolysis were estimated for CLEA-Lip-derivatives (45-56%).


Subject(s)
Candida/enzymology , Enzymes, Immobilized/chemistry , Fungal Proteins/chemistry , Lipase/chemistry , Polymers/chemistry , Yarrowia/enzymology
13.
Environ Sci Technol ; 52(11): 6265-6274, 2018 06 05.
Article in English | MEDLINE | ID: mdl-29706069

ABSTRACT

The presence of antibiotics in treated wastewater and consequently in surface and groundwater resources raises concerns about the formation and spread of antibiotic resistance. Improving the removal of antibiotics during wastewater treatment therefore is a prime objective of environmental engineering. Here we obtained a detailed picture of the fate of sulfonamide antibiotics during activated sludge treatment using a combination of analytical methods. We show that pterin-sulfonamide conjugates, which are formed when sulfonamides interact with their target enzyme to inhibit folic acid synthesis, represent a major biotransformation route for sulfonamides in laboratory batch experiments with activated sludge. The same major conjugates were also present in the effluents of nine Swiss wastewater treatment plants. The demonstration of this biotransformation route, which is related to bacterial growth, helps explain seemingly contradictory views on optimal conditions for sulfonamide removal. More importantly, since pterin-sulfonamide conjugates show retained antibiotic activity, our findings suggest that risk from exposure to sulfonamide antibiotics may be less reduced during wastewater treatment than previously assumed. Our results thus further emphasize the inadequacy of focusing on parent compound removal and the importance of investigating biotransformation pathways and removal of bioactivity to properly assess contaminant removal in both engineered and natural systems.


Subject(s)
Sewage , Water Pollutants, Chemical , Anti-Bacterial Agents , Biotransformation , Pterins , Sulfonamides
14.
N Biotechnol ; 43: 37-43, 2018 Jul 25.
Article in English | MEDLINE | ID: mdl-28720419

ABSTRACT

Piracetam (2-oxo-1-pyrrolidine acetamide) is a popular cognitive enhancer, which has recently been detected in waste and drinking water. Nootropic drugs are designed to affect human metabolism and act on the nervous system, but their environmental effects have yet to be the subject of detailed studies. In this report, we present the efficient biodegradation of the cognitive enhancer, piracetam. Two bacterial strains capable of using this compound as the sole carbon source were isolated and later identified as Ochrobactrum anthropi strain MW6 and Ochrobactrum intermedium strain MW7. The compound's mineralization and the cleavage of the heterocyclic ring were shown in the experiments with 14C-labeled piracetam. This is also the first report of a pharmaceutical's degradation by the Ochrobactrum genus. This study presents model microorganisms that can be used in further investigation of piracetam's degradation pathways as well as enzymes and genes involved in the process.


Subject(s)
Nootropic Agents/metabolism , Ochrobactrum/metabolism , Piracetam/metabolism , Chromatography, High Pressure Liquid , Ochrobactrum/growth & development , Ochrobactrum/isolation & purification , Piracetam/analysis
15.
Sci Rep ; 7(1): 17991, 2017 12 21.
Article in English | MEDLINE | ID: mdl-29269847

ABSTRACT

A microcosm experiment was conducted at two phases in order to investigate the ability of indigenous consortia alone or bioaugmented to degrade weathered polystyrene (PS) films under simulated marine conditions. Viable populations were developed on PS surfaces in a time dependent way towards convergent biofilm communities, enriched with hydrocarbon and xenobiotics degradation genes. Members of Alphaproteobacteria and Gammaproteobacteria were highly enriched in the acclimated plastic associated assemblages while the abundance of plastic associated genera was significantly increased in the acclimated indigenous communities. Both tailored consortia efficiently reduced the weight of PS films. Concerning the molecular weight distribution, a decrease in the number-average molecular weight of films subjected to microbial treatment was observed. Moreover, alteration in the intensity of functional groups was noticed with Fourier transform infrared spectrophotometry (FTIR) along with signs of bio-erosion on the PS surface. The results suggest that acclimated marine populations are capable of degrading weathered PS pieces.

16.
Sci Rep ; 7(1): 15783, 2017 Nov 17.
Article in English | MEDLINE | ID: mdl-29150672

ABSTRACT

We report a cluster of genes encoding two monooxygenases (SadA and SadB) and one FMN reductase (SadC) that enable Microbacterium sp. strain BR1 and other Actinomycetes to inactivate sulfonamide antibiotics. Our results show that SadA and SadC are responsible for the initial attack of sulfonamide molecules resulting in the release of 4-aminophenol. The latter is further transformed into 1,2,4-trihydroxybenzene by SadB and SadC prior to mineralization and concomitant production of biomass. As the degradation products lack antibiotic activity, the presence of SadA will result in an alleviated bacteriostatic effect of sulfonamides. In addition to the relief from antibiotic stress this bacterium gains access to an additional carbon source when this gene cluster is expressed. As degradation of sulfonamides was also observed when Microbacterium sp. strain BR1 was grown on artificial urine medium, colonization with such strains may impede common sulfonamide treatment during co-infections with pathogens of the urinary tract. This case of biodegradation exemplifies the evolving catabolic capacity of bacteria, given that sulfonamide bacteriostatic are purely of synthetic origin. The wide distribution of this cluster in Actinomycetes and the presence of traA encoding a relaxase in its vicinity suggest that this cluster is mobile and that is rather alarming.


Subject(s)
Actinobacteria/metabolism , Anti-Bacterial Agents/pharmacology , Flavin Mononucleotide/metabolism , Hydroquinones/metabolism , Mixed Function Oxygenases/metabolism , Sulfonamides/metabolism , Actinobacteria/drug effects , Actinobacteria/genetics , Actinobacteria/growth & development , Biodegradation, Environmental/drug effects , Carbon Radioisotopes , Genes, Bacterial , Multigene Family , Phylogeny
17.
Genome Announc ; 5(31)2017 Aug 03.
Article in English | MEDLINE | ID: mdl-28774990

ABSTRACT

Achromobacter denitrificans strain PR1 was isolated from an enrichment culture able to use sulfamethoxazole as an energy source. Here, we describe the complete genome of this strain sequenced by Illumina MiSeq and Oxford Nanopore MinION.

18.
PLoS One ; 12(8): e0183984, 2017.
Article in English | MEDLINE | ID: mdl-28841722

ABSTRACT

This study investigated the potential of bacterial-mediated polyethylene (PE) degradation in a two-phase microcosm experiment. During phase I, naturally weathered PE films were incubated for 6 months with the indigenous marine community alone as well as bioaugmented with strains able to grow in minimal medium with linear low-density polyethylene (LLDPE) as the sole carbon source. At the end of phase I the developed biofilm was harvested and re-inoculated with naturally weathered PE films. Bacteria from both treatments were able to establish an active population on the PE surfaces as the biofilm community developed in a time dependent way. Moreover, a convergence in the composition of these communities was observed towards an efficient PE degrading microbial network, comprising of indigenous species. In acclimated communities, genera affiliated with synthetic (PE) and natural (cellulose) polymer degraders as well as hydrocarbon degrading bacteria were enriched. The acclimated consortia (indigenous and bioaugmented) reduced more efficiently the weight of PE films in comparison to non-acclimated bacteria. The SEM images revealed a dense and compact biofilm layer and signs of bio-erosion on the surface of the films. Rheological results suggest that the polymers after microbial treatment had wider molecular mass distribution and a marginally smaller average molar mass suggesting biodegradation as opposed to abiotic degradation. Modifications on the surface chemistry were observed throughout phase II while the FTIR profiles of microbially treated films at month 6 were similar to the profiles of virgin PE. Taking into account the results, we can suggest that the tailored indigenous marine community represents an efficient consortium for degrading weathered PE plastics.


Subject(s)
Bacteria/metabolism , Polyethylene/metabolism , Seawater/microbiology , Water Microbiology , Bacteria/genetics , Bacteria/growth & development , Biodegradation, Environmental , Biofilms , Metagenome , Microscopy, Electron, Scanning , Polymerase Chain Reaction , Rheology , Spectroscopy, Fourier Transform Infrared
19.
Sci Total Environ ; 599-600: 332-339, 2017 Dec 01.
Article in English | MEDLINE | ID: mdl-28478362

ABSTRACT

The nature and stability of bound residues (BRs) derived from the widely used brominated flame retardant tetrabromobisphenol A (TBBPA) in fine-textured soil is unknown. We incubated 14C-labeled TBBPA in silty clay rice paddy soil for 93days under oxic conditions. TBBPA dissipated with a first-order kinetic constant kd of 0.0474±0.0017day-1 (t1/2 14.6±0.3days) and mineralized with a km of 0.0011±0.00002day-1. At the end of the incubation, four metabolites, including two methylation products (TBBPA monomethyl and dimethyl ether), accounted for 7.9±0.1% of the initial TBBPA. The BRs continuously increased in amount to a maximum of 80.1±3.6%. About 86.3±0.9% of the BRs localized in the humin fraction and 55.9±1.5% was hydrolyzable with strong alkali (SAH-BRs), which represents reversible BRs. Together with results previously reported for coarse-textured soil, these results indicate that the absolute amounts of both BRs and SAH-BRs of TBBPA as well as the relative contribution of SAH-BRs to total BRs in fine-textured soil are markedly higher than in coarse-textured soil. When BRs-containing soil was incubated with fresh soil for 231days, 9.2±0.3% was mineralized (km 0.00047±0.00002day-1) and SAH-BRs decreased to 34.1±1.1%, accompanied by transformation into other BR forms. These indicate that BRs are bioavailable in the soil. Amendment with rice root exudates did not effectively affect the mineralization, release, and distribution of BRs, suggesting that bioavailability of BRs but not microbial activity limits the degradation of BRs in the silty clay soil. This study provides first insights into the nature and stability of TBBPA-derived BRs in fine-textured soil under oxic conditions and indicates the significant role of reversible BRs in the environmental risk of TBBPA.

20.
Biochim Biophys Acta Proteins Proteom ; 1865(5): 520-530, 2017 May.
Article in English | MEDLINE | ID: mdl-28232026

ABSTRACT

The crystal structure of hydroquinone 1,2-dioxygenase, a Fe(II) ring cleaving dioxygenase from Sphingomonas sp. strain TTNP3, which oxidizes a wide range of hydroquinones to the corresponding 4-hydroxymuconic semialdehydes, has been solved by Molecular Replacement, using the coordinates of PnpCD from Pseudomonas sp. strain WBC-3. The enzyme is a heterotetramer, constituted of two subunits α and two ß of 19 and 38kDa, respectively. Both the two subunits fold as a cupin, but that of the small α subunit lacks a competent metal binding pocket. Two tetramers are present in the asymmetric unit. Each of the four ß subunits in the asymmetric unit binds one Fe(II) ion. The iron ion in each ß subunit is coordinated to three protein residues, His258, Glu264, and His305 and a water molecule. The crystal structures of the complexes with the substrate methylhydroquinone, obtained under anaerobic conditions, and with the inhibitors 4-hydroxybenzoate and 4-nitrophenol were also solved. The structures of the native enzyme and of the complexes present significant differences in the active site region compared to PnpCD, the other hydroquinone 1,2-dioxygenase of known structure, and in particular they show a different coordination at the metal center.


Subject(s)
Dioxygenases/chemistry , Hydroquinones/chemistry , Iron/chemistry , Sphingomonas/enzymology , Amino Acid Sequence , Binding Sites , Catalytic Domain , Crystallography, X-Ray , Dioxygenases/genetics , Dioxygenases/metabolism , Nitrophenols/chemistry , Parabens/chemistry , Protein Conformation , Sequence Homology, Amino Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...