Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Methods Mol Biol ; 2593: 171-195, 2023.
Article in English | MEDLINE | ID: mdl-36513931

ABSTRACT

Lysosomes are highly dynamic degradation/recycling organelles that harbor sophisticated molecular sensors and signal transduction machinery through which they control cell adaptation to environmental cues and nutrients. The movements of these signaling hubs comprise persistent, directional runs-active, ATP-dependent transport along the microtubule tracks-interspersed by short, passive movements and pauses imposed by cytoplasmic constraints. The trajectories of individual lysosomes are usually obtained by time-lapse imaging of the acidic organelles labeled with LysoTracker dyes or fluorescently-tagged lysosomal-associated membrane proteins LAMP1 and LAMP2. Subsequent particle tracking generates large data sets comprising thousands of lysosome trajectories and hundreds of thousands of data points. Analyzing such data sets requires unbiased, automated methods to handle large data sets while capturing the temporal heterogeneity of lysosome trajectory data. This chapter describes integrated and largely automated workflow from live cell imaging to lysosome trajectories to computing the parameters of lysosome dynamics. We describe an open-source code for implementing the continuous wavelet transform (CWT) to distinguish trajectory segments corresponding to active transport (i.e., "runs" and "flights") versus passive lysosome movements. Complementary cumulative distribution functions (CDFs) of the "runs/flights" are generated, and Akaike weight comparisons with several competing models (lognormal, power law, truncated power law, stretched exponential, exponential) are performed automatically. Such high-throughput analyses yield useful aggregate/ensemble metrics for lysosome active transport.


Subject(s)
Lysosomes , Wavelet Analysis , Lysosomes/metabolism , Lysosomal Membrane Proteins/metabolism , Biological Transport, Active , Software
2.
Cells ; 11(2)2022 01 13.
Article in English | MEDLINE | ID: mdl-35053385

ABSTRACT

Lysosomes-that is, acidic organelles known for degradation/recycling-move through the cytoplasm alternating between bursts of active transport and short, diffusive motions or even pauses. While their mobility is essential for lysosomes' fusogenic and non-fusogenic interactions with target organelles, their movements have not been characterized in adequate detail. Here, large-scale statistical analysis of lysosomal movement trajectories reveals that lysosome trajectories in all examined cell types-both cancer and noncancerous ones-are superdiffusive and characterized by heavy-tailed distributions of run and flight lengths. Consideration of Akaike weights for various potential models (lognormal, power law, truncated power law, stretched exponential, and exponential) indicates that the experimental data are best described by the lognormal distribution, which, in turn, can be related to one of the space-search strategies particularly effective when "thorough" search needs to balance search for rare target(s) (organelles). In addition, automated, wavelet-based analysis allows for co-tracking the motions of lysosomes and the cargos they carry-particularly the nanoparticle aggregates known to cause selective lysosome disruption in cancerous cells. The methods we describe here could help study nanoparticle assemblies, viruses, and other objects transported inside various vesicle types, as well as coordinated movements of organelles/particles in the cytoplasm. Custom-written code that includes integrated workflow for our analyses is made available for academic use.


Subject(s)
Lysosomes/metabolism , Nanoparticles/chemistry , Wavelet Analysis , Animals , Biological Transport , Cell Line, Tumor , Humans , Metal Nanoparticles/chemistry , Mice
3.
ACS Nano ; 15(7): 11470-11490, 2021 07 27.
Article in English | MEDLINE | ID: mdl-34142807

ABSTRACT

Targeted delivery of molecular cargos to specific organelles is of paramount importance for developing precise and effective therapeutics and imaging probes. This work describes a disulfide-based delivery method in which mixed-charged nanoparticles traveling through the endolysosomal tract deliver noncovalently bound dye molecules selectively into mitochondria. This system comprises three elements: (1) The nanoparticles deliver their payloads by a kiss-and-go mechanism - that is, they drop off their dye cargos proximate to mitochondria but do not localize therein; (2) the dye molecules are by themselves nonspecific to any cellular structures but become so with the help of mixed-charge nanocarriers; and (3) the dye is engineered in such a way as to remain in mitochondria for a long time, up to days, allowing for observing dynamic remodeling of mitochondrial networks and long-term tracking of mitochondria even in dividing cells. The selectivity of delivery and long-lasting staining derive from the ability to engineer charge-imbalanced, mixed [+/-] on-particle monolayers and from the structural features of the cargo. Regarding the former, the balance of [+] and [-] ligands can be adjusted to limit cytotoxicity and control the number of dye molecules adsorbed onto the particles' surfaces. Regarding the latter, comparative studies with multiple dye derivatives we synthesized rationalize the importance of polar groups, long alkyl chains, and disulfide moieties in the assembly of fluorescent nanoconstructs and long-lasting staining of mitochondria. Overall, this strategy could be useful for delivering hydrophilic and/or anionic small-molecule drugs difficult to target to mitochondria by classical approaches.


Subject(s)
Drug Carriers , Nanoparticles , Drug Carriers/chemistry , Coloring Agents , Nanoparticles/chemistry , Mitochondria , Disulfides/pharmacology , Fluorescent Dyes/pharmacology
4.
Nat Nanotechnol ; 15(4): 331-341, 2020 04.
Article in English | MEDLINE | ID: mdl-32203435

ABSTRACT

Lysosomes have become an important target for anticancer therapeutics because lysosomal cell death bypasses the classical caspase-dependent apoptosis pathway, enabling the targeting of apoptosis- and drug-resistant cancers. However, only a few small molecules-mostly repurposed drugs-have been tested so far, and these typically exhibit low cancer selectivity, making them suitable only for combination therapies. Here, we show that mixed-charge nanoparticles covered with certain ratios of positively and negatively charged ligands can selectively target lysosomes in cancerous cells while exhibiting only marginal cytotoxicity towards normal cells. This selectivity results from distinct pH-dependent aggregation events, starting from the formation of small, endocytosis-prone clusters at cell surfaces and ending with the formation of large and well-ordered nanoparticle assemblies and crystals inside cancer lysosomes. These assemblies cannot be cleared by exocytosis and cause lysosome swelling, which gradually disrupts the integrity of lysosomal membranes, ultimately impairing lysosomal functions and triggering cell death.


Subject(s)
Lysosomes/metabolism , Nanoparticles , Neoplasms/drug therapy , A549 Cells , Animals , Cell Death , Humans , Hydrogen-Ion Concentration , Lysosomes/pathology , Mice , Nanoparticles/chemistry , Nanoparticles/therapeutic use , Neoplasms/metabolism , Neoplasms/pathology , Rats
5.
Lab Chip ; 19(18): 3140, 2019 Sep 10.
Article in English | MEDLINE | ID: mdl-31468052

ABSTRACT

Correction for 'Immature dendritic cells navigate microscopic mazes to find tumor cells' by Eujin Um et al., Lab Chip, 2019, 19, 1665-1675.

6.
Lab Chip ; 19(9): 1665-1675, 2019 04 23.
Article in English | MEDLINE | ID: mdl-30931468

ABSTRACT

Dendritic cells (DCs) are potent antigen-presenting cells with high sentinel ability to scan their neighborhood and to initiate an adaptive immune response. Whereas chemotactic migration of mature DCs (mDCs) towards lymph nodes is relatively well documented, the migratory behavior of immature DCs (imDCs) in tumor microenvironments is still poorly understood. Here, microfluidic systems of various geometries, including mazes, are used to investigate how the physical and chemical microenvironment influences the migration pattern of imDCs. Under proper degree of confinement, the imDCs are preferentially recruited towards cancer vs. normal cells, accompanied by increased cell speed and persistence. Furthermore, a systematic screen of cytokines, reveals that Gas6 is a major chemokine responsible for the chemotactic preference. These results and the accompanying theoretical model suggest that imDC migration in complex tissue environments is tuned by a proper balance between the strength of the chemical gradients and the degree of spatial confinement.


Subject(s)
Cell Movement , Dendritic Cells/cytology , Animals , Cell Line , Chemotaxis , Cytokines/metabolism , Dendritic Cells/metabolism , Mice , Mice, Inbred BALB C
SELECTION OF CITATIONS
SEARCH DETAIL
...