Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 18(1): 79-83, 2016 Jan 07.
Article in English | MEDLINE | ID: mdl-26607027

ABSTRACT

The activity of Au nanoparticle-loaded P25 TiO2 (Au/P25) plasmonic photocatalysts, evaluated by the oxidative decomposition of formic acid in water under visible light irradiation, was enhanced up to 3 times by simply mixing Au/P25 with photocatalytically inactive h-BN nanosheets as a result of electron transfer from photoexcited Au/TiO2 to the h-BN nanosheets and retardation of the charge recombination.

2.
Article in English | MEDLINE | ID: mdl-16875868

ABSTRACT

Lithium formate ((6)LiOOCH.H(2)O), 95% (6)Li enrichment, combined with an exchange of crystallization water with D(2)O was investigated. The ESR spectrum of the radiation induced free radicals stable at room temperature consists of a singlet with a narrow line width, 0.92mT. (6)Li has smaller magnetic moment and nuclear spin, which resulted in the narrower line width accompanied with an increase in peak amplitude. In comparison with lithium formate with natural isotopic composition, (6)Li (7.5%, I=1) and (7)Li (92.5%, I=3/2), the sensitivity was increased by a factor of two. With optimised spectrometer settings (6)Li formate had seven times higher sensitivity compared to alanine. Therefore this material is proposed as a dosimeter material in a dose range down to 0.1Gy. The g and the (13)C-hyperfine (hf) tensors of the CO(2)(-) radical anion, major paramagnetic products, were evaluated to be g=(2.0037, 1.9975, 2.0017), and A((13)C)=(465.5, 447.5, 581.3) MHz for polycrystalline samples at room temperature. Furthermore, the (1)H-hf and (6)Li-hf tensors observed for the surroundings of CO(2)(-) by ENDOR technique were in fairly good agreement with DFT calculations. The CO(2)(-) radicals are found to be so stable that the formate is applicable to the ESR dosimetry, because of fully relaxing in a fully relaxed geometrical structure of the CO(2)(-) component and remaining tight binding with the surroundings after the H atom detachment from HCO(2)(-).


Subject(s)
Formates/radiation effects , Gamma Rays , Dose-Response Relationship, Radiation , Electron Spin Resonance Spectroscopy , Formates/chemistry , Free Radicals/radiation effects , Temperature , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...