Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Waste Manag ; 140: 173-182, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-34836725

ABSTRACT

This study explored the production and evaluation of briquettes made from dried fecal sludge mixed with fresh food waste as a dual strategy to solve energy poverty and poor sanitation problems in Ugandan slums. Cylindrical briquettes measuring 82 mm height by 76 mm diameter were produced from dried fecal sludge (FS) alone, and FS mixed separately with pineapple peels (FS + PP), charcoal fines (FS + CD), and bean husks (FS + BH) in a mix ratio of 50% FS: 50% biomass (wt/wt basis) using red soil as the binder. Physiochemical characteristics and fuel thermal efficiency of the briquettes were tested following ASTM standards and were compared to wood-derived charcoal and commonly traded briquettes on market in Uganda. The average moisture content was 5.1%. Bulk density was highest in FS briquettes (1.12 g/cm3) and lowest in FS + BH (0.847 g/cm3). Volatile matter (VM) was highest in FS + PP (39%) and lowest in FS alone (25.7%). The average ash content was 30.4%. FS + PP had the highest calorific value (17.92 MJ/kg) while FS alone had the lowest (6.19 MJ/kg). The highest burning rate was recorded in FS + CD briquettes (8 g/min) and was lowest in FS + PP (4 g/min). Based on the calculated burning rates and calorific values, the economic advantage calculations implied that blending one ton of dry FS with one ton of dry pineapple peels for fuel briquettes, and their use as a substitute could save consumers about USD 620 per ton of wood charcoal foregone.


Subject(s)
Refuse Disposal , Sewage , Biofuels/analysis , Food , Poverty Areas , Sanitation
2.
J Environ Manage ; 279: 111784, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33310239

ABSTRACT

The largest portion of pineapple peels and pulp generated from production points is disposed of haphazardly contributing to a number of environmental and health challenges. However, these wastes contain valuable plant nutrients that could be recovered to boost soil fertility, and increase agricultural production. This study evaluated the variation in physico-chemical parameters in batch and continuous vermicomposting systems as potential pathways for nutrient recovery from pineapple waste. The study compared the efficiency of waste reduction and nutrient recovery for batch (B), and continuous (C) vermicomposting systems during a 60-day period. The substrates were pineapple peels (PW), and cattle manure (CM) fed in a ratio of 4:1 (w/w). Control reactors were fed with 100% CM in both the feeding modes. Results indicated that waste degradation was 60%, and 54% while earthworm biomass increased by 57% and 129% for BPW, and CPW, respectively. pH significantly decreased with time in both systems. Total phosphorous increased with vermicomposting time with that of B being significantly higher than C systems. Nitrogen, potassium, and sodium significantly increased in the control experiments while the three elements significantly reduced for BPW, and CPW owing to high leachate production in the latter. The N, P, K, and C retention in vermicompost was 24.2%, 90.4%, 67.5%, 41.1%, and 32.6%, 91.2%, 79.3%, 46.1%, for BPW and CPW, respectively. Continuous systems produced higher earthworm biomass and retained more nutrients in vermicompost than batch systems, and can therefore, be recommended as better systems for pineapple waste vermicomposting.


Subject(s)
Ananas , Oligochaeta , Animals , Cattle , Manure , Nutrients , Soil
4.
Sci Total Environ ; 710: 136347, 2020 Mar 25.
Article in English | MEDLINE | ID: mdl-31923689

ABSTRACT

This study investigated the occurrence and removal in wastewater and water bodies in Nakivubo wetland area and Inner Murchison Bay, Lake Victoria, of common prescription and non-prescription pharmaceutically-active substances (PhACs) sold in Kampala city, Uganda. A questionnaire was sent to 20 pharmacies in Kampala, to identify the most commonly sold PhACs in the city. During two sampling campaigns, samples were collected from Bugolobi wastewater treatment plant (WWTP) influent and effluent and surface water samples from Nakivubo channel, Nakivubo wetland and Inner Murchison Bay. The concentrations of 28 PhACs, organic matter, solids and nutrients in water samples were analysed. Ciprofloxacin (antibiotic), cetirizine (anti-allergy), metformin (anti-diabetes), metronidazole (antibiotic) and omeprazole (gastric therapy) were reported by pharmacies to be the PhACs most commonly sold in the study area. Chemical analysis of water samples revealed that trimethoprim (antibiotic) and sulfamethoxazole (antibiotic) were the dominant PhACs in water from all sites except Lake Victoria. Other PhACs such as atenolol (anti-hypertensive), carbamazepine (anti-epileptic) and diclofenac (anti-inflammatory) were also found at all study sites except Lake Victoria. ∑PhACs in effluent from Bugolobi WWTP (13000-37,600 ng L-1) was higher than in the corresponding influent (4000-28,000 ng L-1), indicating poor removal of PhACs within the WWTP. ∑PhACs decreased by a factor of 2-6 between Bugolobi WWTP effluent and Nakivubo channel (5700 ng L-1), due to dilution and sorption to channel sediment, and by a factor of 1-3 between the Nakivubo channel and Nakivubo wetland (3900-5400 ng L-1), due to sorption to sediment and uptake by plants in the wetland. No detectable levels of PhACs were found in water from Lake Victoria. Overall, this investigation demonstrated that PhACs in wastewater enter Nakivubo water system. Thus, Bugolobi WWTP needs to be upgraded to improve PhACs removal from wastewater. Considering the high occurrence of antibiotics in the water system in Kampala, development and spread of antimicrobial resistance within the area should also be investigated.


Subject(s)
Lakes , Water Pollutants, Chemical , Cities , Environmental Monitoring , Pharmaceutical Preparations , Uganda , Waste Disposal, Fluid , Wastewater , Water Resources , Wetlands
5.
Sci Total Environ ; 631-632: 660-667, 2018 Aug 01.
Article in English | MEDLINE | ID: mdl-29539594

ABSTRACT

Occurrence and concentrations of 26 per- and polyfluoroalkyl substances (PFASs) were evaluated in wastewater, surface water, soil and crop plants (yam (Dioscorea spp.), maize (Zea mays) and sugarcane (Saccharum officinarum)) in Nakivubo wetland and Lake Victoria at Kampala, Uganda. ∑PFAS concentrations in effluent from Bugolobi wastewater treatment plant (WWTP) were higher (5.6-9.1ngL-1) than in the corresponding influent (3.4-5.1ngL-1), indicating poor removal of PFASs within the WWTP. ∑PFAS concentrations decreased by a factor of approximately five between Nakivubo channel (8.5-12ngL-1) and Lake Victoria (1.0-2.5ngL-1), due to dilution, sorption to sediment and uptake by plants in the wetland. ∑PFAS concentrations were within the range 1700-7900pgg-1 dry weight (dw) in soil and 160pgg-1 dw (maize cobs) to 380pgg-1 dw (sugarcane stems) in plants. The dominant PFASs were perfluorohexanesulfonate (PFHxS) in wastewater, perfluorooctanoate (PFOA) in surface water, perfluorooctanesulfonate (PFOS) in soil and perfluoroheptanoate (PFHpA) and PFOA in different plant tissues, reflecting PFAS-specific partitioning behaviour in different matrices. Soil-water partitioning coefficient (log Kd) in wetland soil under yam was lowest for short-chain PFHxA (1.9-2.3Lkg-1) and increased with increasing chain length to 2.8-3.1Lkg-1 for perfluoroundecanoate (PFUnDA) and 2.8-3.1Lkg-1 for perfluoroctanesulfonate (PFOS). The log Koc values ranged between 2.2 and 3.6Lkg-1, with the highest log Koc estimated for long-chain perfluorocarbon PFASs (i.e. PFUnDA 3.2-3.5Lkg-1 and PFOS 3.2-3.6Lkg-1). The concentration ratio (CR) between plants and soil was <1 for all PFASs and plant species, with the highest CR estimated for PFHpA (0.65-0.67) in sugarcane stem and PFBS (0.53-0.59) in yam root. Overall, this investigation demonstrated PFASs entry into the terrestrial food chain and drinking water resources in Kampala, Uganda. Source identification, assessment of impacts on human health and the environment, and better wastewater treatment technologies are needed.

6.
Infect Ecol Epidemiol ; 6: 32453, 2016.
Article in English | MEDLINE | ID: mdl-27834174

ABSTRACT

BACKGROUND: Vermicomposting is a mesophilic process using earthworms to efficiently and at low cost process large volumes of organic waste. It has been suggested to not only increase soil fertility but also increase biomass of beneficial bacteria while reducing harmful bacteria. The aim of this study was to set up a strategy to investigate and characterise the viral as well as the bacterial composition of a vermicomposting system. MATERIAL AND METHODS: The vermicomposting unit used in this study was placed at the Makerere University Agricultural Research Institute Kabanyolo on the outskirts of Kampala, Uganda, and was fed with 80% cattle manure and 20% food waste. On Day 172, the compost was terminated and compost samples were collected from three layers of the unit: the top, the middle and the bottom layer. A metagenomic approach was then applied to characterise the viral and bacterial composition of the vermicomposting system. RESULTS AND DISCUSSION: A high abundance and diversity of bacteria were identified. Proteobacteria was the largest phyla in the compost (mainly Alpha-, Gamma- and Betaproteobacteria), constituting almost 65% of the bacterial reads in the data sets. DNA samples from several possible pathogenic bacteria, such as Salmonella spp., Escherichia coli, Enterobacter spp., Enterococcus spp. and Clostridium spp, were detected in the vermicompost, suggesting that there might still be harmful bacteria in the vermicast. Phages constituted the main viral group; apart from phages, mainly insect viruses were identified. The only animal or human virus identified was kobuvirus. In summary, metagenomic analysis was shown to be an efficient technology to characterise the microbial composition of vermicast. The data from this study contribute to a better understanding of the microbes present in this kind of composting system and can help determine measures necessary for safe manure handling.

7.
Waste Manag ; 39: 96-103, 2015 May.
Article in English | MEDLINE | ID: mdl-25728090

ABSTRACT

Inadequate organic waste management can contribute to the spread of diseases and have negative impacts on the environment. Vermicomposting organic waste could have dual beneficial effects by generating an economically viable animal feed protein in the form of worm biomass, while alleviating the negative effects of poor organic waste management. In this study, a low-maintenance vermicomposting system was evaluated as manure and food waste management system for small-holder farmers. A vermicomposting system using the earthworm species Eudrilus eugeniae and treating cow manure and food waste was set up in Kampala, Uganda, and monitored for 172days. The material degradation and protein production rates were evaluated after 63days and at the end of the experiment. The material reduction was 45.9% and the waste-to-biomass conversion rate was 3.5% in the vermicomposting process on a total solids basis. A possible increase in the conversion rate could be achieved by increasing the frequency of worm harvesting. Vermicomposting was found to be a viable manure management method in small-scale urban animal agriculture; the return of investment was calculated to be 280% for treating the manure of a 450kg cow. The vermicompost was not sanitised, although hygiene quality could be improved by introducing a post-stabilisation step in which no fresh material is added. The value of the animal feed protein generated in the process can act as an incentive to improve current manure management strategies.


Subject(s)
Manure/analysis , Oligochaeta/metabolism , Waste Management/methods , Agriculture , Animals , Biodegradation, Environmental , Cattle , Cities , Uganda
SELECTION OF CITATIONS
SEARCH DETAIL
...