Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Transgenic Res ; 33(1-2): 1-19, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38071732

ABSTRACT

The antimicrobial activity of the alpha-HAIRPININ ANTIMICROBIAL PEPTIDE X (SmAMP-X gene, GenBank acc. No. HG423454.1) from Stellaria media plant has been shown in vitro. Here, we isolated the SmAMP-X gene promoter and found two genomic sequences for the promoter (designated pro-SmAMP-X and pro-SmAMP-X-Ψ2) with 83% identity in their core and proximal regions. We found that the abilities of these promoters to express the uidA reporter and the nptII selectable marker differ according to the structural organization of T-DNA in the binary vector used for plant transformation. Analysis of Agrobacterium-infiltrated Nicotiana benthamiana leaves, transgenic Arabidopsis thaliana lines, and transgenic Solanum tuberosum plants revealed that both promoters in the pCambia1381Z and pCambia2301 binary vectors generate 42-100% of the ß-glucuronidase (GUS) activity generated by the CaMV35S promoter. According to 5'-RACE (rapid amplification of cDNA ends) analysis, both plant promoters are influenced by the CaMV35S enhancer used to express selectable markers in the T-DNA region of pCambia1381Z and pCambia2301. The exclusion of CaMV35S enhancer from the T-DNA region significantly reduces the efficiency of pro-SmAMP-X-Ψ2 promoter for GUS production. Both promoters in the pCambia2300 vector without CaMV35S enhancer in the T-DNA region weakly express the nptII selectable marker in different tissues of transgenic N. tabacum plants and enable selection of transgenic cells in media with a high concentration of kanamycin. Overall, promoter sequences must be functionally validated in binary vectors lacking CaMV35S enhancer.


Subject(s)
Arabidopsis , Stellaria , Stellaria/genetics , Stellaria/metabolism , Genetic Vectors/genetics , Promoter Regions, Genetic/genetics , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Transformation, Genetic , Gene Expression Regulation, Plant , Glucuronidase/genetics
2.
Plants (Basel) ; 10(12)2021 Dec 06.
Article in English | MEDLINE | ID: mdl-34961152

ABSTRACT

Long-read data is a great tool to discover new active transposable elements (TEs). However, no ready-to-use tools were available to gather this information from low coverage ONT datasets. Here, we developed a novel pipeline, nanotei, that allows detection of TE-contained structural variants, including individual TE transpositions. We exploited this pipeline to identify TE insertion in the Arabidopsis thaliana genome. Using nanotei, we identified tens of TE copies, including ones for the well-characterized ONSEN retrotransposon family that were hidden in genome assembly gaps. The results demonstrate that some TEs are inaccessible for analysis with the current A. thaliana (TAIR10.1) genome assembly. We further explored the mobilome of the ddm1 mutant with elevated TE activity. Nanotei captured all TEs previously known to be active in ddm1 and also identified transposition of non-autonomous TEs. Of them, one non-autonomous TE derived from (AT5TE33540) belongs to TR-GAG retrotransposons with a single open reading frame (ORF) encoding the GAG protein. These results provide the first direct evidence that TR-GAGs and other non-autonomous LTR retrotransposons can transpose in the plant genome, albeit in the absence of most of the encoded proteins. In summary, nanotei is a useful tool to detect active TEs and their insertions in plant genomes using low-coverage data from Nanopore genome sequencing.

3.
Genes (Basel) ; 12(8)2021 07 29.
Article in English | MEDLINE | ID: mdl-34440341

ABSTRACT

In plant breeding, the ability to manipulate meiotic recombination aids in the efficient construction of new allelic compositions of chromosomes and facilitates gene transfer from wild relatives of crop plants. The DNA mismatch repair system antagonizes meiotic recombination. In this research, a trial was conducted to evaluate transgenic tomato plants carrying an RNA interference (RNAi) construct designed to inhibit the expression of the mismatch repair MSH2 gene. To drive the RNAi construct, we used either a pro-SmAMP2 promoter from Stellaria media ANTIMICROBIAL PEPTIDE2 or a Cauliflower mosaic virus 35S promoter (CaMV35S). The results of real-time PCR showed that, with a 16 h light/8 h dark photoperiod, MSH2-RNAi tomato transgenic plants exhibited MSH2 gene transcript contents ranging from 0% to 3% in the leaves, relative to untransformed controls. However, with this lighting mode, the MSH2-RNAi transgenic plants grew slowly, flowered poorly, and did not form seed sets. During cultivation with a 12 h light/12 h dark photoperiod, MSH2-RNAi transgenic plants exhibited MSH2 gene transcript contents ranging from 3% to 42%, relative to untransformed controls. Under these conditions, F1 hybrid seed sets formed for most of the MSH2-RNAi transgenic plants with the RNAi construct driven by the CaMV35S promoter, and for one transformant with the RNAi construct driven by the pro-SmAMP2 promoter. Under conditions of a 12 h light/12 h dark photoperiod, most of the F1 transgenic hybrids showed MSH2 gene transcript contents ranging from 3% to 34% and formed F2 offspring sets, which made it possible to assess the meiotic recombination frequency. We showed that the effective inhibition of MSH2 in MSH2-RNAi tomato transgenic plants is not associated with an increase in meiotic recombination compared to the control, but it stimulates the sterility of plants. It was established that the expression of the MSH2 gene in tomato plants is about 50 times higher with a 12 h light/12 h dark than with a 16 h light/8 h dark photoperiod. It is discussed that, in Solanum lycopersicum tomato plants, which are not sensitive to the day length for flowering, changing the lighting time may be a means of controlling the meiotic recombination frequency within certain limits.


Subject(s)
Gene Silencing , MutS Homolog 2 Protein/genetics , Plant Proteins/genetics , RNA Interference , Solanum lycopersicum/physiology , Solanum lycopersicum/genetics , Meiosis/genetics , Plants, Genetically Modified , Promoter Regions, Genetic , Recombination, Genetic/genetics
4.
Genes (Basel) ; 11(12)2020 11 26.
Article in English | MEDLINE | ID: mdl-33256091

ABSTRACT

Synthetic promoters are vital for genetic engineering-based strategies for crop improvement, but effective methodologies for their creation and systematic testing are lacking. We report here on the comparative analysis of the promoters pro-SmAMP1 and pro-SmAMP2 from Stellaria media ANTIMICROBIAL PEPTIDE1 (AMP1) and ANTIMICROBIAL PEPTIDE2 (AMP2). These promoters are more effective than the well-known Cauliflower mosaic virus 35S promoter. Although these promoters share about 94% identity, the pro-SmAMP1 promoter demonstrated stronger transient expression of a reporter gene in Agrobacterium infiltration of Nicotiana benthamiana leaves, while the pro-SmAMP2 promoter was more effective for the selection of transgenic tobacco (Nicotiana tabacum) cells when driving a selectable marker. Using the cap analysis of gene expression method, we detected no differences in the structure of the transcription start sites for either promoter in transgenic plants. For both promoters, we used fine-scale deletion analysis to identify 160 bp-long sequences that retain the unique properties of each promoter. With the use of chimeric promoters and directed mutagenesis, we demonstrated that the superiority of the pro-SmAMP1 promoter for Agrobacterium-mediated infiltration is caused by the proline-inducible ACTCAT cis-element strictly positioned relative to the TATA box in the core promoter. Surprisingly, the ACTCAT cis-element not only activated but also suppressed the efficiency of the pro-SmAMP1 promoter under proline stress. The absence of the ACTCAT cis-element and CAANNNNATC motif (negative regulator) in the pro-SmAMP2 promoter provided a more constitutive gene expression profile and better selection of transgenic cells on selective medium. We created a new synthetic promoter that enjoys high effectiveness both in transient expression and in selection of transgenic cells. Intact promoters with differing properties and high degrees of sequence identity may thus be used as a basis for the creation of new synthetic promoters for precise and coordinated gene expression.


Subject(s)
Arabidopsis Proteins/genetics , Carboxypeptidases/genetics , Plant Proteins/genetics , Plants, Genetically Modified/genetics , Promoter Regions, Genetic/genetics , Stellaria/genetics , Transgenes/genetics , Agrobacterium/genetics , Base Sequence , Caulimovirus/genetics , Gene Expression Regulation, Plant/genetics , Genes, Reporter/genetics , Plant Leaves/genetics , Plant Leaves/virology , Nicotiana/genetics , Nicotiana/virology , Transcription Initiation Site/physiology , Transcriptome/genetics
5.
BMC Biotechnol ; 16(1): 43, 2016 05 18.
Article in English | MEDLINE | ID: mdl-27189173

ABSTRACT

BACKGROUND: In a previous study we found that in chickweed the expression level of the pro-SmAMP2 gene was comparable or even higher to that of the ß-actin gene. This high level of the gene expression has attracted our attention as an opportunity for the identification of novel strong promoters of plant origin, which could find its application in plant biotechnology. Therefore, in the present study we focused on the nucleotide sequence identification and the functional characteristics of the pro-SmAMP2 promoter in transgenic plants. RESULTS: In chickweed (Stellaria media), a 2120 bp promoter region of the pro-SmAMP2 gene encoding antifungal peptides was sequenced. Six 5'-deletion variants -2120, -1504, -1149, -822, -455, and -290 bp of pro-SmAMP2 gene promoter were fused with the coding region of the reporter gene gusA in the plant expression vector pCambia1381Z. Independent transgenic plants of tobacco Nicotiana tabacum were obtained with each genetic structure. GUS protein activity assay in extracts from transgenic plants showed that all deletion variants of the promoter, except -290 bp, expressed the gusA gene. In most transgenic plants, the GUS activity level was comparable or higher than in plants with the viral promoter CaMV 35S. GUS activity remains high in progenies and its level correlates positively with the amount of gusA gene mRNA in T3 homozygous plants. The activity of the рro-SmAMP2 promoter was detected in all organs of the transgenic plants studied, during meiosis and in pollen as well. CONCLUSION: Our results show that the рro-SmAMP2 promoter can be used for target genes expression control in transgenic plants.


Subject(s)
Antimicrobial Cationic Peptides/genetics , Gene Expression Regulation, Plant/genetics , Plant Proteins/genetics , Plants, Genetically Modified/genetics , Promoter Regions, Genetic/genetics , Stellaria/genetics , Base Sequence , Molecular Sequence Data
6.
Transgenic Res ; 21(2): 313-25, 2012 Apr.
Article in English | MEDLINE | ID: mdl-21706181

ABSTRACT

Two novel antifungal hevein-like peptides, SmAMP1.1a and SmAMP2.2a, were previously isolated from seeds of Stellaria media. It has been established that these peptides accumulate in this weed as a result of proteolysis of two propeptides, pro-SmAMP1 and pro-SmAMP2. The primary structure of these propeptides is unique; in addition to having a signal peptide and negatively charged C-terminus, each of these structures consists of two hevein-like peptides of different length separated by a space rather than a single peptide. In this work, we demonstrated that the expression of the pro-SmAMP1 and pro-SmAMP2 genes was tissue-specific and increased substantially under exposure to fungal infection. To elucidate whether S. media has any advantages in defending against phytopathogens due to its unusual structure of pro-SmAMP1 and pro-SmAMP2, on the basis of the pro-SmAMP1 gene, we created three genetic constructs. Arabidopsis and tobacco plants were subsequently transformed with these constructs. Transgenic plants bearing the full-length pro-SmAMP1 gene exhibited the best resistance to the phytopathogens Bipolaris sorokiniana and Thielaviopsis basicola. The resistance of S. media plants to phytopathogenic fungi was likely due to the fungal-inducible expression of pro-SmAMP1 and pro-SmAMP2 genes, and due to the specific features of the primary structure of the corresponding propeptides. As a result of the processing of these propeptides, two different antimicrobial peptides were released simultaneously. Based on our results, we conclude that the genes for antimicrobial peptides from S. media may be promising genetic tools for the improvement of plant resistance to fungal diseases.


Subject(s)
Antimicrobial Cationic Peptides/immunology , Arabidopsis/immunology , Ascomycota/pathogenicity , Disease Resistance , Nicotiana/immunology , Plant Lectins/immunology , Stellaria/genetics , Agrobacterium/genetics , Agrobacterium/metabolism , Antimicrobial Cationic Peptides/genetics , Arabidopsis/genetics , Arabidopsis/microbiology , Gene Expression Regulation, Plant , Genes, Plant , Genetic Vectors/genetics , Genetic Vectors/metabolism , Plant Diseases/immunology , Plant Diseases/microbiology , Plant Lectins/genetics , Plant Proteins/genetics , Plant Proteins/immunology , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/immunology , Plants, Genetically Modified/microbiology , Nicotiana/genetics , Nicotiana/microbiology , Transcription, Genetic , Transformation, Genetic , Transgenes
SELECTION OF CITATIONS
SEARCH DETAIL
...