Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
BMC Oral Health ; 24(1): 940, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39143593

ABSTRACT

BACKGROUND: To evaluate the effect of staining beverages on the color-changing of resin-infiltrated artificial white spot lesions (WSLs). METHODS: Thirty-five artificial WSLs were created by pH cycling on flat bovine teeth specimens. The WSLs were treated with resin infiltration and were divided into five groups based on staining beverages: artificial saliva, coffee, wine, green tea, and Coca-Cola. These specimens were subjected to a 28-day exposure to the respective beverages. Color stability was assessed using a spectrophotometer at different time points: baseline, after 7, 14, 21, and 28 days of exposure, and repolishing. The color difference (∆E) between each time point and the baseline was calculated. Statistical analysis was performed using two-way measures ANOVA with a significance level of p = 0.05. RESULTS: All resin-infiltrated specimens exposed to staining beverages for 7 days exhibited more significant color changes than those exposed to artificial saliva. The color change patterns varied based on the type of beverage. The color alterations intensified with extended immersion in the wine and Coca-Cola groups, while there were no significant differences in the color of specimens after 28 days of immersion in the coffee and green tea groups. However, after cleaning with pumice powder, all specimens showed significantly reduced color changes compared to those observed after 28 days of immersion, except those immersed in coffee. CONCLUSIONS: Exposure of resin-infiltrated bovine tooth specimens to staining beverages resulted in a significant color alteration as the immersion time increased. However, the staining effect could be minimized by cleaning with pumice powder, except for the coffee group. CLINICAL RELEVANCE: After resin infiltration treatment, patients should be advised to minimize the consumption of colored beverages to prevent staining that could impact esthetic appearance.


Subject(s)
Beverages , Coffee , Color , Saliva, Artificial , Spectrophotometry , Tea , Animals , Cattle , Beverages/adverse effects , Wine , Tooth Discoloration/chemically induced , Tooth Discoloration/etiology , Resins, Synthetic , Hydrogen-Ion Concentration , Carbonated Beverages/adverse effects , Silicates
2.
J Dent Sci ; 17(1): 389-398, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35028062

ABSTRACT

BACKGROUND/PURPOSE: Tooth brushing, material mechanical ageing procedure, is the most effective way in removing biofilm. The purpose of this study was to investigate the surface roughness, fluoride-release, and S. mutans biofilm formation on various tooth-colored restorative materials before and after brushing. MATERIALS AND METHODS: Discs of materials, a nanocomposite (Filtek Z350XT; CO), a giomer (Beautifil II; GIOMER), a resin-modified glass-ionomer material (Fuji II LC; RMGI), and a conventional glass-ionomer material (Fuji IX GP Extra; GI), were prepared, polished with abrasive discs (SofLex), and divided into brushed and not brushed groups. The surface roughness of specimens was observed using a contact profilometer, fluoride-release was measured using a fluoride-specific ion electrode, and S. mutans biofilm formation, biovolume and live/dead cells, was observed under a confocal laser scanning microscope. RESULTS: Higher roughness was observed on GI and RMGI than on CO and GIOMER. Brushing had no effect on the roughness. The fluoride-release of GI and RMGI was higher than that of GIOMER. The fluoride-release decreased after brushing in all materials. The biovolume of S. mutans was not significantly different between GIOMER, RMGI and GI, while CO showed the highest. Brushing resulted in a higher biovolume for all materials, except CO, which showed no change. After brushing, all the tested materials demonstrated identical biovolumes. There were no significant differences in live/dead cells among all groups. CONCLUSION: Brushing demonstrated a negative effect on the fluoride-release and biovolume of S. mutans biofilms for all tested materials except nanocomposites.

SELECTION OF CITATIONS
SEARCH DETAIL