Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Tissue Cell ; 67: 101428, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32858481

ABSTRACT

Sialic acids (Sia) are terminal components of glycoconjugates that are involved in molecular and cellular interactions in the olfactory system. Diverse glycoconjugates are expressed in the salamander olfactory projection; however, their sialylation and the linkage of Sia to underlying sugars remain largely unknown. The present study aimed to determine the expression of Sia linked to galactose (Gal)-N-acetylglucosamine and N-acetylgalactosamine (GalNAc) in the olfactory bulbs of three species of salamanders using lectin binding. Abundant distribution of sialoglycoconjugates was observed in the salamander olfactory bulb by lectins, Sambucus sieboldiana (SSA) and Maackia amurensis (MAM). Moreover, SSA and MAM showed heterogeneous bindings in the primary olfactory projection of Cynops pyrrhogaster and C. orientalis. Lectin reactivities obviously decreased in all layers of the olfactory bulb after sialidase digestion, indicating selective binding to sialoglycoconjugates. Next, we examined the expression of the subterminal sugar residues, Gal and GalNAc, after terminal Sia removal. Desialylation in the olfactory bulb enhanced the reactivity of Jacalin and Vicia villosa (VVA) lectins that recognize Gal and GalNAc respectively. Together with the binding of SSA and MAM, Sia linked to Gal and GalNAc might be a major component of sialoglycoconjugates in the salamander olfactory projection.


Subject(s)
Glycoconjugates/metabolism , N-Acetylneuraminic Acid/metabolism , Olfactory Bulb/metabolism , Urodela/metabolism , Animals , Female , Lectins/metabolism , Male , Species Specificity , Sugars/metabolism
2.
Anat Histol Embryol ; 49(2): 260-269, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31854005

ABSTRACT

Diverse glycoconjugates are expressed in the vertebrate olfactory bulb and serve as guidance cues for axons of nasal receptor neurons. Although the involvement of glycoconjugates in the segregation of the olfactory pathway has been suggested, it is poorly understood in salamanders. In this study, lectin histochemistry was used to determine glycoconjugate distribution in the olfactory bulb of the Chinese fire-bellied newt (Cynops orientalis). Succinylated wheat germ agglutinin (sWGA), Ricinus communis agglutinin-I and Lens culinaris agglutinin showed different bindings in the nerve fibre layer or glomerular layer, or both, between the main and accessory olfactory bulbs. We then investigated the lectin-binding pattern after the removal of terminal sialic acids using neuraminidase. Desialylation resulted in a change in the binding reactivities with seven lectins. Wheat germ agglutinin, sWGA, soybean agglutinin (SBA) and peanut agglutinin showed different degrees of binding between the main and accessory olfactory bulbs. In addition, SBA showed a heterogeneous labelling of glomeruli in the rostral region of the main olfactory bulb. Our results suggest that terminal sialic acids mask the heterogeneity of glycoconjugates in the olfactory bulb of C. orientalis.


Subject(s)
Glycoconjugates/metabolism , Olfactory Bulb/metabolism , Salamandridae/metabolism , Animals , Histocytochemistry , Lectins/metabolism , N-Acetylneuraminic Acid/metabolism , Vomeronasal Organ/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...