Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 30(6): 9208-9221, 2022 Mar 14.
Article in English | MEDLINE | ID: mdl-35299355

ABSTRACT

Transformations of the low-energy vibrational spectra are associated with structural changes in an analyte and closely related to the instability of weak chemical bounds. Terahertz (THz)/far-infrared optical spectroscopy is commonly used to probe such transformation, aimed at characterization of the underlying solid-phase chemical reactions in organic compounds. However, such studies usually provide quite qualitative information about the temperature- and time-dependent parameters of absorption peaks in dielectric spectra of an analyte. In this paper, an approach for quantitative analyses of the solid-phased chemical reactions based on the THz pulsed spectroscopy was developed. It involves studying an evolution of the sample optical properties, as a function of the analyte temperature and reaction time, and relies on the classical oscillator model, the sum rule, and the Arrhenius theory. The method allows one to determine the temperature-dependent reaction rate V1(T) and activation energy Ea. To demonstrate the practical utility of this method, it was applied to study α-lactose monohydrate during its temperature-induced molecular decomposition. Analysis of the measured THz spectra revealed the increase of the reaction rate in the range of V1 ≃ ~9 × 10-4-10-2 min-1, when the analyte temperature rises from 313 to 393 K, while the Arrhenius activation energy is Ea ≃ ~45.4 kJ/mol. Thanks to a large number of obtained physical and chemical parameters, the developed approach expands capabilities of THz spectroscopy in chemical physics, analytical chemistry, and pharmaceutical industry.

2.
Biomed Opt Express ; 12(9): 5368-5386, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34692188

ABSTRACT

In this paper, terahertz (THz) pulsed spectroscopy and solid immersion microscopy were applied to study interactions between water vapor and tissue scaffolds-the decellularized bovine pericardium (DBP) collagen matrices, in intact form, cross-linked with the glutaraldehyde or treated by plasma. The water-absorbing properties of biomaterials are prognostic for future cell-mediated reactions of the recipient tissue with the scaffold. Complex dielectric permittivity of DBPs was measured in the 0.4-2.0 THz frequency range, while the samples were first dehydrated and then exposed to water vapor atmosphere with 80.0 ± 5.0% relative humidity. These THz dielectric measurements of DBPs and the results of their weighting allowed to estimate the adsorption time constants, an increase of tissue mass, as well as dispersion of these parameters. During the adsorption process, changes in the DBPs' dielectric permittivity feature an exponential character, with the typical time constant of =8-10 min, the transient process saturation at =30 min, and the tissue mass improvement by =1-3%. No statistically-relevant differences between the measured properties of the intact and treated DBPs were observed. Then, contact angles of wettability were measured for the considered DBPs using a recumbent drop method, while the observed results showed that treatments of DBP somewhat affects their surface energies, polarity, and hydrophilicity. Thus, our studies revealed that glutaraldehyde and plasma treatment overall impact the DBP-water interactions, but the resultant effects appear to be quite complex and comparable to the natural variability of the tissue properties. Such a variability was attributed to the natural heterogeneity of tissues, which was confirmed by the THz microscopy data. Our findings are important for further optimization of the scaffolds' preparation and treatment technologies. They pave the way for THz technology use as a non-invasive diagnosis tool in tissue engineering and regenerative medicine.

3.
Biomed Opt Express ; 12(1): 69-83, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33659071

ABSTRACT

Terahertz (THz) technology offers novel opportunities in the intraoperative neurodiagnosis. Recently, the significant progress was achieved in the study of brain gliomas and intact tissues, highlighting a potential for THz technology in the intraoperative delineation of tumor margins. However, a lack of physical models describing the THz dielectric permittivity of healthy and pathological brain tissues restrains the further progress in this field. In the present work, the ex vivo THz dielectric response of human brain tissues was analyzed using relaxation models of complex dielectric permittivity. Dielectric response of tissues was parametrized by a pair of the Debye relaxators and a pair of the overdamped-oscillators - namely, the double-Debye (DD) and double-overdamped-oscillator (DO) models. Both models accurately reproduce the experimental curves for the intact tissues and the WHO Grades I-IV gliomas. While the DD model is more common for THz biophotonics, the DO model is more physically rigorous, since it satisfies the sum rule. In this way, the DO model and the sum rule were, then, applied to estimate the content of water in intact tissues and gliomas ex vivo. The observed results agreed well with the earlier-reported data, justifying water as a main endogenous label of brain tumors in the THz range. The developed models can be used to describe completely the THz-wave - human brain tissues interactions in the frameworks of classical electrodynamics, being quite important for further research and developments in THz neurodiagnosis of tumors.

4.
Opt Express ; 28(18): 26228-26238, 2020 Aug 31.
Article in English | MEDLINE | ID: mdl-32906899

ABSTRACT

A continuously-tunable terahertz (THz) bandpass filter based on the resonant electromagnetic-wave transmission through a metal-hole array featuring a gradually changing period was developed and fabricated on a silicon substrate using optical lithography. A gradient geometry of the metal-hole array yields a wide tunability of the filter transmission, when operating with a focussed THz beam. The filter was studied numerically, using the finite element method, and experimentally, using the THz pulsed spectroscopy. We find that the central wavelength of the filter transmission band can be tuned in the wide range of λc = 400-800 µm with the relative bandwidth of Δλ/λc ≃ ~0.4. Finally, Kapton-based anti-reflection coating was applied to the filter flat side, in order to suppress an interference pattern in the filter transmission spectrum. We believe that the developed filter holds strong potential for multispectral THz imaging and sensing due to its conceptual simplicity and case of operation. Moreover, the presented filter concept can be translated to other spectral ranges, where appropriate technologies are available for the fabrication of gradient sub-wavelength metal-hole arrays.

5.
J Phys Condens Matter ; 31(6): 065604, 2019 Feb 13.
Article in English | MEDLINE | ID: mdl-30524111

ABSTRACT

Accurate low temperature charge transport measurements in combination with high-precision x-ray diffraction experiments have allowed detection of the symmetry lowering in the single domain Tm0.19Yb0.81B12 crystals that belong to the family of dodecaborides with metal-insulator transition. Based on the fine structure analysis we discover the formation of dynamic charge stripes within the semiconducting matrix of Tm0.19Yb0.81B12. The charge dynamics in these conducting nano-size channels is characterized by broad-band optical spectroscopy that allowed estimating the frequency (~2.4 × 1011 Hz) of quantum motion of the charge carriers. It is suggested that cooperative Jahn-Teller effect in the boron sublattice is a cause of the large-amplitude rattling modes of the Tm and Yb ions responsible for the 'modulation' of the conduction band along one of the [Formula: see text] directions through the variation of 5d-2p hybridization of electron states.

SELECTION OF CITATIONS
SEARCH DETAIL
...