Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 16(5)2023 Mar 03.
Article in English | MEDLINE | ID: mdl-36903210

ABSTRACT

Crystals of Gd3Al2.5Ga2.5O12:Er3+, (Lu0.3Gd0.7)2SiO5:Er3+ and LiNbO3:Er3+ compounds differing in origin and the nature of their inherent structural disorder were crystalized. Optical absorption and luminescence spectra for transitions between the 4I15/2 and the 4I13/2 multiplets of Er3+ ions for the crystal samples were recorded versus temperatures in the region of 80-300 K. Gathered data were analyzed thoroughly providing the in-depth knowledge of the effects of temperature on intensities, wavelengths and bandwidths of Er3+ transitions. The information acquired together with the knowledge of significant structural dissimilarities of the host crystals chosen made it possible to propose an interpretation of the impact of a structural disorder in Er3+-doped crystals on their spectroscopic properties, and to determine their lasing ability at cryogenic temperatures upon resonant (in-band) optical pumping.

2.
Materials (Basel) ; 15(21)2022 Oct 31.
Article in English | MEDLINE | ID: mdl-36363241

ABSTRACT

Novel ternary fluoro-germano-tellurite (GTS) glasses doped with Er3+ ions with 0.5 mol% and 1.0 mol% were fabricated by a conventional melt and quenching method and investigated using methods of optical spectroscopy. The room-temperature absorption spectrum was recorded and analyzed to determine radiative transition rates, radiative lifetimes, and branching ratios of Er3+ luminescence. Decay curves of Er3+ luminesccence were recorded and analyzed. Temperature dependences of emission spectra and absorption spectra in the region from RT (room-temperature) up to 675 K were studied in detail. The contribution of competing radiative and nonradiative processes to the relaxation of luminescent levels of Er3+ was assessed. Absolute and relative sensitivity were established utilizing the comprehensive model based on thermally coupled 2H11/2/4S3/2 excited states of erbium. The high quantum efficiency of the first erbium-excited state and value of gain coefficient indicate that GTS:Er glass system can be considered as conceivable NIR (near infrared) laser material as well.

3.
Materials (Basel) ; 14(9)2021 May 02.
Article in English | MEDLINE | ID: mdl-34063212

ABSTRACT

Optical absorption spectra and luminescence spectra were recorded as a function of temperature between 295 K and 800 K for single crystal samples of Gd2SiO5:Dy3+, Lu2SiO5:Dy3+, LiNbO3:Dy3+, and Gd3Ga3Al2O12:Dy3+ fabricated by the Czochralski method and of YAl3(BO3)4:Dy3+ fabricated by the top-seeded high temperature solution method. A thermally induced change of fluorescence intensity ratio (FIR) between the 4I15/2→ 6H15/2 and 4F9/2 → 6H15/2 emission bands of Dy3+ was inferred from experimental data. It was found that relative thermal sensitivities SR at 350 K are higher for YAl3(BO3)4:Dy3+ and Lu2SiO5:Dy3+than those for the remaining systems studied. Based on detailed examination of the structural peculiarities of the crystals it was ascertained that the observed difference between thermosensitive features cannot be attributed directly to the dissimilarity of structural factors consisting of the geometry and symmetry of Dy3+ sites, the number of non-equivalent Dy3+ sites, and the host anisotropy. Instead, it was found that a meaningful correlation between relative thermal sensitivity SR and rates of radiative transitions of Dy3+ inferred from the Judd-Ofelt treatment exists. It was concluded that generalization based on the Judd-Ofelt parameters and luminescence branching ratio analysis may be useful during a preliminary assessment of thermosensitive properties of new phosphor materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...