Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Nanotechnology ; 35(32)2024 May 23.
Article in English | MEDLINE | ID: mdl-38710179

ABSTRACT

We have investigated the plasma-enhanced chemical vapor deposition growth of the phosphorus-doped hydrogenated nanocrystalline silicon (n-nc-Si:H) film as an electron-selective layer in silicon heterojunction (SHJ) solar cells. The effect of power densities on the precursor gas dissociation are investigated using optical emission spectra and the crystalline fraction in n-nc-Si:H films are correlated with the dark conductivity. With thePdof 122 mW cm-2and ∼2% phosphorus doping, we observed Raman crystallinity of 53%, high dark conductivity of 43 S cm-1, and activation energy of ∼23 meV from the ∼30 nm n-nc-Si:H film. The n-nc-Si:H layer improves the textured c-Si surface passivation by two-fold to ∼2 ms compared to the phosphorus-doped hydrogenated amorphous silicon (n-a-Si:H) layers. An enhancement in the open-circuit voltage and external quantum efficiency (from >650 nm) due to the better passivation at the rear side of the cell after integrating the n-nc-Si:H layer compared to its n-a-Si:H counterpart. An improvement in the charge carrier transport is also observed with an increase in fill factor from ∼71% to ∼75%, mainly due to a reduction in electron-selective contact resistivity from ∼271 to ∼61 mΩ-cm2. Finally, with the relatively better c-Si surface passivation and carrier selectivity, a power conversion efficiency of ∼19.90% and pseudo-efficiency of ∼21.90% have been realized from the SHJ cells.

SELECTION OF CITATIONS
SEARCH DETAIL
...