Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Antiviral Res ; 228: 105933, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38851593

ABSTRACT

The underlying threat of new Zika virus (ZIKV) outbreaks remains, as no vaccines or therapies have yet been developed. In vitro research has shown that glycolysis is a key factor to enable sustained ZIKV replication in neuroprogenitors. However, neither in vivo nor clinical investigation of glycolytic modulators as potential therapeutics for ZIKV-related fetal abnormalities has been conducted. Accordingly, we tested the therapeutic potential of metabolic modulators in relevant in vitro systems comprising two pools of neuroprogenitors (NPCs), which resemble early and late stages of pregnancy. Effective doses of metabolic modulators [3.0 µM] dimethyl fumarate (DMF), [3.2 mM] dichloroacetate (DCA), and [6.3 µM] VER-246608 were determined for these cells by their effect on lactate release, pyruvate dehydrogenase (PDH) activity and cell survival. The drugs were used in a 24h pre-treatment and kept throughout ZIKV infection of NPCs. Drug effects and ZIKV replication were assessed at 24- and 56-h post-infection. In early NPCs treated with DMF, DCA and VER-246608, there was a significant reduction in the extracellular release of ZIKV potentially by PDH-mediated increased mitochondrial oxidation of glucose. Out of the three drugs, only DCA was observed to reduce viral replication in late NPCs treated with DCA. Altogether, our findings suggest that reduction of anaerobic glycolysis could be of therapeutic potential against ZIKV-related fetal abnormalities and that clinical translation should consider the use of specific glycolytic modulators over different trimesters.

2.
Am J Trop Med Hyg ; 110(5): 856-867, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38579704

ABSTRACT

Dengue fever (DF) is an endemic infectious tropical disease and is rapidly becoming a global problem. Dengue fever is caused by one of the four dengue virus (DENV) serotypes and is spread by the female Aedes mosquito. Clinical manifestations of DF may range from asymptomatic to life-threatening severe illness with conditions of hemorrhagic fever and shock. Early and precise diagnosis is vital to avoid mortality from DF. A different approach is required to combat DF because of the challenges with the vaccines currently available, which are nonspecific; each is capable of causing cross-reaction and disease-enhancing antibody responses against the residual serotypes. MicroRNAs (miRNAs) are known to be implicated in DENV infection and are postulated to be involved in most of the host responses. Thus, they might be a suitable target for new strategies against the disease. The involvement of miRNAs in cellular activities and pathways during viral infections has been explored under numerous conditions. Interestingly, miRNAs have also been shown to be involved in viral replication. In this review, we summarize the role of known miRNAs, specifically the role of miRNA Let-7c (miR-Let-7c), miR-133a, miR-30e, and miR-146a, in the regulation of DENV replication and their possible effects on the initial immune reaction.


Subject(s)
Dengue Virus , Dengue , MicroRNAs , Virus Replication , MicroRNAs/genetics , Dengue Virus/genetics , Humans , Dengue/immunology , Dengue/virology , Animals , Virus Replication/genetics , Aedes/virology , Aedes/genetics
3.
Influenza Other Respir Viruses ; 18(3): e13276, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38513364

ABSTRACT

Every year, influenza virus infections cause significant morbidity and mortality worldwide. They pose a substantial burden of disease, in terms of not only health but also the economy. Owing to the ability of influenza viruses to continuously evolve, annual seasonal influenza vaccines are necessary as a prophylaxis. However, current influenza vaccines against seasonal strains have limited effectiveness and require yearly reformulation due to the virus undergoing antigenic drift or shift. Vaccine mismatches are common, conferring suboptimal protection against seasonal outbreaks, and the threat of the next pandemic continues to loom. Therefore, there is a great need to develop a universal influenza vaccine (UIV) capable of providing broad and durable protection against all influenza virus strains. In the quest to develop a UIV that would obviate the need for annual vaccination and formulation, a multitude of strategies is currently underway. Promising approaches include targeting the highly conserved epitopes of haemagglutinin (HA), neuraminidase (NA), M2 extracellular domain (M2e) and internal proteins of the influenza virus. The identification and characterization of broadly neutralizing antibodies (bnAbs) targeting conserved regions of the viral HA protein, in particular, have provided important insight into novel vaccine designs and platforms. This review discusses universal vaccine approaches presently under development, with an emphasis on those targeting the highly conserved stalk of the HA protein, recent technological advancements used and the future prospects of a UIV in terms of its advantages, developmental obstacles and potential shortcomings.


Subject(s)
Influenza Vaccines , Influenza, Human , Orthomyxoviridae Infections , Orthomyxoviridae , Humans , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Antibodies, Viral , Hemagglutinins , Viral Proteins , Hemagglutinin Glycoproteins, Influenza Virus/genetics
4.
PLoS Negl Trop Dis ; 16(4): e0010291, 2022 04.
Article in English | MEDLINE | ID: mdl-35482672

ABSTRACT

Flaviviruses have caused large epidemics and ongoing outbreaks for centuries. They are now distributed in every continent infecting up to millions of people annually and may emerge to cause future epidemics. Some of the viruses from this group cause severe illnesses ranging from hemorrhagic to neurological manifestations. Despite decades of research, there are currently no approved antiviral drugs against flaviviruses, urging for new strategies and antiviral targets. In recent years, integrated omics data-based drug repurposing paired with novel drug validation methodologies and appropriate animal models has substantially aided in the discovery of new antiviral medicines. Here, we aim to review the latest progress in the development of both new and repurposed (i) direct-acting antivirals; (ii) host-targeting antivirals; and (iii) multitarget antivirals against flaviviruses, which have been evaluated both in vitro and in vivo, with an emphasis on their targets and mechanisms. The search yielded 37 compounds that have been evaluated for their efficacy against flaviviruses in animal models; 20 of them are repurposed drugs, and the majority of them exhibit broad-spectrum antiviral activity. The review also highlighted the major limitations and challenges faced in the current in vitro and in vivo evaluations that hamper the development of successful antiviral drugs for flaviviruses. We provided an analysis of what can be learned from some of the approved antiviral drugs as well as drugs that failed clinical trials. Potent in vitro and in vivo antiviral efficacy alone does not warrant successful antiviral drugs; current gaps in studies need to be addressed to improve efficacy and safety in clinical trials.


Subject(s)
Flavivirus , Hepatitis C, Chronic , Viruses , Animals , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Drug Repositioning , Hepatitis C, Chronic/drug therapy , Humans
5.
Front Immunol ; 13: 773191, 2022.
Article in English | MEDLINE | ID: mdl-35371036

ABSTRACT

Zika virus (ZIKV), despite being discovered six decades earlier, became a major health concern only after an epidemic in French Polynesia and an increase in the number of microcephaly cases in Brazil. Substantial evidence has been found to support the link between ZIKV and neurological complications in infants. The virus targets various cells in the brain, including radial glial cells, neural progenitor cells (NPCs), astrocytes, microglial and glioblastoma stem cells. It affects the brain cells by exploiting different mechanisms, mainly through apoptosis and cell cycle dysregulation. The modulation of host immune response and the inflammatory process has also been demonstrated to play a critical role in ZIKV induced neurological complications. In addition to that, different ZIKV strains have exhibited specific neurotropism and unique molecular mechanisms. This review provides a comprehensive and up-to-date overview of ZIKV-induced neuroimmunopathogenesis by dissecting its main target cells in the brain, and the underlying cellular and molecular mechanisms. We highlighted the roles of the different ZIKV host factors and how they exploit specific host factors through various mechanisms. Overall, it covers key components for understanding the crosstalk between ZIKV and the brain.


Subject(s)
Microcephaly , Nervous System Diseases , Neural Stem Cells , Zika Virus Infection , Zika Virus , Brain/pathology , Humans , Microcephaly/pathology , Nervous System Diseases/pathology , Neural Stem Cells/pathology , Zika Virus/physiology
6.
Front Microbiol ; 13: 743147, 2022.
Article in English | MEDLINE | ID: mdl-35308394

ABSTRACT

Zika virus (ZIKV) is a mosquito-borne, single-stranded RNA virus belonging to the genus Flavivirus. Although ZIKV infection is usually known to exhibit mild clinical symptoms, intrauterine ZIKV infections have been associated with severe neurological manifestations, including microcephaly and Guillain Barre syndrome (GBS). Therefore, it is imperative to understand the mechanisms of ZIKV entry into the central nervous system (CNS) and its effect on brain cells. Several routes of neuro-invasion have been identified, among which blood-brain barrier (BBB) disruption is the commonest mode of access. The molecular receptors involved in viral entry remain unknown; with various proposed molecular ZIKV-host interactions including potential non-receptor mediated cellular entry. As ZIKV invade neuronal cells, they trigger neurotoxic mechanisms via cell-autonomous and non-cell autonomous pathways, resulting in neurogenesis dysfunction, viral replication, and cell death, all of which eventually lead to microcephaly. Together, our understanding of the biological mechanisms of ZIKV exposure would aid in the development of anti-ZIKV therapies targeting host cellular and/or viral components to combat ZIKV infection and its neurological manifestations. In this present work, we review the current understanding of ZIKV entry mechanisms into the CNS and its implications on the brain. We also highlight the status of the drug repurposing approach for the development of potential antiviral drugs against ZIKV.

7.
Front Immunol ; 12: 750365, 2021.
Article in English | MEDLINE | ID: mdl-34745123

ABSTRACT

Zika virus (ZIKV) received worldwide attention over the past decade when outbreaks of the disease were found to be associated with severe neurological syndromes and congenital abnormalities. Unlike most other flaviviruses, ZIKV can spread through sexual and transplacental transmission, adding to the complexity of Zika pathogenesis and clinical outcomes. In addition, the spread of ZIKV in flavivirus-endemic regions, and the high degree of structural and sequence homology between Zika and its close cousin Dengue have raised questions on the interplay between ZIKV and the pre-existing immunity to other flaviviruses and the potential immunopathogenesis. The Zika epidemic peaked in 2016 and has affected over 80 countries worldwide. The re-emergence of large-scale outbreaks in the future is certainly a possibility. To date, there has been no approved antiviral or vaccine against the ZIKV. Therefore, continuing Zika research and developing an effective antiviral and vaccine is essential to prepare the world for a future Zika epidemic. For this purpose, an in-depth understanding of ZIKV interaction with many different pathways in the human host and how it exploits the host immune response is required. For successful infection, the virus has developed elaborate mechanisms to escape the host response, including blocking host interferon response and shutdown of certain host cell translation. This review provides a summary on the key host factors that facilitate ZIKV entry and replication and the mechanisms by which ZIKV antagonizes antiviral innate immune response and involvement of adaptive immune response leading to immunopathology. We also discuss how ZIKV modulates the host immune response during sexual transmission and pregnancy to induce infection, how the cross-reactive immunity from other flaviviruses impacts ZIKV infection, and provide an update on the current status of ZIKV vaccine development.


Subject(s)
Zika Virus Infection , Adaptive Immunity , Animals , Autoimmunity , Cross Reactions , Female , Guillain-Barre Syndrome/etiology , Guillain-Barre Syndrome/immunology , Host-Pathogen Interactions , Humans , Immunity, Innate , Pregnancy , Sexually Transmitted Diseases, Viral/immunology , Sexually Transmitted Diseases, Viral/transmission , Zika Virus/physiology , Zika Virus Infection/complications , Zika Virus Infection/immunology , Zika Virus Infection/transmission
8.
Front Immunol ; 12: 742941, 2021.
Article in English | MEDLINE | ID: mdl-34659238

ABSTRACT

The coronavirus disease-19 (COVID-19) elicited by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused devastating health, economic and social impact worldwide. Its clinical spectrum ranges from asymptomatic to respiratory failure and multi-organ failure or death. The pathogenesis of SARS-CoV-2 infection is attributed to a complex interplay between virus and host immune response. It involves activation of multiple inflammatory pathways leading to hyperinflammation and cytokine storm, resulting in tissue damage, acute respiratory distress syndrome (ARDS) and multi-organ failure. Accumulating evidence has raised concern over the long-term health effects of COVID-19. Importantly, the neuroinvasive potential of SARS-CoV-2 may have devastating consequences in the brain. This review provides a conceptual framework on how the virus tricks the host immune system to induce infection and cause severe disease. We also explore the key differences between mild and severe COVID-19 and its short- and long-term effects, particularly on the human brain.


Subject(s)
Adaptive Immunity/immunology , COVID-19/pathology , Cytokine Release Syndrome/pathology , Immunity, Innate/immunology , SARS-CoV-2/immunology , COVID-19/complications , COVID-19/immunology , Cytokine Release Syndrome/immunology , Cytokines/blood , Humans , Multiple Organ Failure/pathology , Respiratory Distress Syndrome/pathology , Sex Factors , Post-Acute COVID-19 Syndrome
9.
PLoS One ; 9(3): e92021, 2014.
Article in English | MEDLINE | ID: mdl-24647042

ABSTRACT

BACKGROUND: With its elusive pathogenesis, dengue imposes serious healthcare, economic and social burden on endemic countries. This study describes the clinical and immunological parameters of a dengue cohort in a Malaysian city, the first according to the WHO 2009 dengue classification. METHODOLOGY AND FINDINGS: This longitudinal descriptive study was conducted in two Malaysian hospitals where patients aged 14 and above with clinical symptoms suggestive of dengue were recruited with informed consent. Among the 504 participants, 9.3% were classified as non-dengue, 12.7% without warning signs, 77.0% with warning signs and 1.0% with severe dengue based on clinical diagnosis. Of these, 37% were misdiagnosed as non-dengue, highlighting the importance of both clinical diagnosis and laboratory findings. Thrombocytopenia, prolonged clotting time, liver enzymes, ALT and AST served as good markers for dengue progression but could not distinguish between patients with and without warning signs. HLA-A*24 and -B*57 were positively associated with Chinese and Indians patients with warning signs, respectively, whereas A*03 may be protective in the Malays. HLA-A*33 was also positively associated in patients with warning signs when compared to those without. Dengue NS1, NS2A, NS4A and NS4B were found to be important T cell epitopes; however with no apparent difference between with and without warning signs patients. Distinction between the 2 groups of patients was also not observed in any of the cytokines analyzed; nevertheless, 12 were significantly differentially expressed at the different phases of illness. CONCLUSION: The new dengue classification system has allowed more specific detection of dengue patients, however, none of the clinical parameters allowed distinction of patients with and without warning signs. While the HLA-A*33 may be predictive marker for development of warning signs; larger studies will be needed to support this findings.


Subject(s)
Biomarkers/metabolism , Dengue/epidemiology , Dengue/immunology , Disease Progression , Endemic Diseases/statistics & numerical data , Adolescent , Adult , Aged , Aged, 80 and over , Case-Control Studies , Cohort Studies , Comorbidity , Demography , Dengue/diagnosis , Dengue/virology , Dengue Virus/physiology , Female , Gene Frequency/genetics , HLA-A Antigens/genetics , HLA-B Antigens/genetics , Humans , Immunoglobulin M/immunology , Interferon-gamma/metabolism , Malaysia/epidemiology , Male , Middle Aged , Reproducibility of Results , T-Lymphocytes/immunology , Young Adult
10.
J Oleo Sci ; 61(4): 227-39, 2012.
Article in English | MEDLINE | ID: mdl-22450124

ABSTRACT

Melanoma incidence and mortality have risen dramatically in recent years. No effective treatment for metastatic melanoma exists; hence currently, an intense effort for new drug evaluation is being carried out. In this study, we investigated the effects of a palm oil-derived nanopolymer called Bio-12 against human malignant melanoma. The nanopolymers of Bio-12 are lipid esters derived from a range of fatty acids of palm oil. Our study aims to identify the anti-proliferative properties of Bio-12 against human malignant melanoma cell line (MeWo) and to elucidate the mode of actions whereby Bio-12 brings about cell death. Bio-12 significantly inhibited the growth of MeWo cells in a concentration- and time- dependent manner with a median inhibitory concentration (IC50) value of 1/25 dilution after 72 h but was ineffective on human normal skin fibroblasts (CCD-1059sk). We further investigated the mode of actions of Bio-12 on MeWo cells. Cell cycle flow cytometry demonstrated that MeWo cells treated with increasing concentrations of Bio-12 resulted in S-phase arrest, accompanied by the detection of sub-G1 content, indicative of apoptotic cell death. Induction of apoptosis was further confirmed via caspase (substrate) cleavage assay which showed induction of early apoptosis in MeWo cells. In addition, DNA strand breaks which are terminal event in apoptosis were evident through increase of TUNEL positive cells and formation of a characteristic DNA ladder on agarose gel electrophoresis. Moreover, treatment of MeWo cells with Bio-12 induced significant increase in lactate dehydrogenase (LDH) activity. These results show that Bio-12 possesses the ability to suppress proliferation of human malignant melanoma MeWo cells and this suppression is at least partly attributed to the initiation of the S-phase arrest, apoptosis and necrosis, suggesting that it is indeed worth for further investigations.


Subject(s)
Antineoplastic Agents/pharmacology , Cell Cycle Checkpoints/drug effects , Melanoma/drug therapy , Plant Oils/chemistry , Polymers/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Death/drug effects , Cell Line, Tumor , Cell Proliferation , Drug Screening Assays, Antitumor , Enzyme Activation/drug effects , G1 Phase/drug effects , Humans , L-Lactate Dehydrogenase/metabolism , Melanoma/metabolism , Palm Oil , Polymers/chemical synthesis , Polymers/chemistry , S Phase/drug effects , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...