Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Molecules ; 29(14)2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39064943

ABSTRACT

A series of 13 new 3-substituted 5-(5-nitro-2-furyl)-1,2,4-oxadiazoles was synthesized from different aminonitriles. All compounds were screened in the disc diffusion test at a 100 µg/mL concentration to determine the bacterial growth inhibition zone presence and diameter, and then the minimum inhibitory concentrations (MICs) were determined for the most active compounds by serial dilution. The compounds showed antibacterial activity against ESKAPE bacteria, predominantly suppressing the growth of 5 species out of the panel. Some compounds had similar or lower MICs against ESKAPE pathogens compared to ciprofloxacin, nitrofurantoin, and furazidin. In particular, 3-azetidin-3-yl-5-(5-nitro-2-furyl)-1,2,4-oxadiazole (2h) inhibited S. aureus at a concentration lower than all comparators. Compound 2e (5-(5-nitro-2-furyl)-3-[4-(pyrrolidin-3-yloxy)phenyl]-1,2,4-oxadiazole) was active against Gram-positive ESKAPE pathogens as well as M. tuberculosis. Differences in the molecular periphery led to high selectivity for the compounds. The induced-fit docking (IFD) modeling technique was applied to in silico research. Molecular docking results indicated the targeting of compounds against various nitrofuran-associated biological targets.


Subject(s)
Anti-Bacterial Agents , Microbial Sensitivity Tests , Molecular Docking Simulation , Nitrofurans , Nitrofurans/pharmacology , Nitrofurans/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Drug Design , Structure-Activity Relationship , Oxadiazoles/chemistry , Oxadiazoles/pharmacology , Molecular Structure , Staphylococcus aureus/drug effects
2.
Molecules ; 29(13)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38999023

ABSTRACT

A series of 21 new 7'H-spiro[azetidine-3,5'-furo [3,4-d]pyrimidine]s substituted at the pyrimidine ring second position were synthesized. The compounds showed high antibacterial in vitro activity against M. tuberculosis. Two compounds had lower minimum inhibitory concentrations against Mtb (H37Rv strain) compared with isoniazid. The novel spirocyclic scaffold shows excellent properties for anti-tuberculosis drug development.


Subject(s)
Antitubercular Agents , Azetidines , Microbial Sensitivity Tests , Mycobacterium tuberculosis , Nitrofurans , Spiro Compounds , Mycobacterium tuberculosis/drug effects , Antitubercular Agents/pharmacology , Antitubercular Agents/chemistry , Antitubercular Agents/chemical synthesis , Azetidines/chemistry , Azetidines/pharmacology , Nitrofurans/pharmacology , Nitrofurans/chemistry , Spiro Compounds/chemistry , Spiro Compounds/pharmacology , Spiro Compounds/chemical synthesis , Structure-Activity Relationship , Molecular Structure
3.
Molecules ; 28(18)2023 Sep 07.
Article in English | MEDLINE | ID: mdl-37764267

ABSTRACT

A series of eight 5-nitrofuran-tagged oxazolyl tetrahydropyrazolopyridines (THPPs) has been prepared in six stages with excellent regioselectivity. The testing of these compounds against pathogens of the ESKAPE panel showed a good activity of lead compound 1-(2-methoxyethyl)-5-(5-nitro-2-furoyl)-3-(1,3-oxazol-5-yl)-4,5,6,7-tetrahydro-1H-pyrazolo[4,3-c] pyridine (13g), which is superior to nitrofurantoin. These results confirmed the benefit of combining a THPP scaffold with a nitrofuran warhead. Certain structure-activity relationships were established in the course of this study which were rationalized by the induced-fit docking experiments in silico.


Subject(s)
Nitrofurans , Nitrofurans/pharmacology , Pyrazoles , Nitrofurantoin , Structure-Activity Relationship
4.
Int J Mol Sci ; 24(13)2023 Jun 25.
Article in English | MEDLINE | ID: mdl-37445804

ABSTRACT

Recent developments in the field of nanomedicine have introduced a wide variety of nanomaterials that are capable of recognizing and killing tumor cells with increased specificity. A major limitation preventing the widespread introduction of nanomaterials into the clinical setting is their fast clearance from the bloodstream via the mononuclear phagocyte system (MPS). One of the most promising methods used to overcome this limitation is the MPS-cytoblockade, which forces the MPS to intensify the clearance of erythrocytes by injecting allogeneic anti-erythrocyte antibodies and, thus, significantly prolongs the circulation of nanoagents in the blood. However, on the way to the clinical application of this approach, the question arises whether the induced suppression of macrophage phagocytosis via the MPS-cytoblockade could pose health risks. Here, we show that highly cytotoxic doxorubicin- or clodronate-loaded liposomes, which are widely used for cancer therapy and biomedical research, induce a similar increase in the nanoparticle blood circulation half-life in mice as the MPS-cytoblockade, which only gently and temporarily saturates the macrophages with the organism's own erythrocytes. This result suggests that from the point of view of in vivo macrophage suppression, the MPS-cytoblockade should be less detrimental than the liposomal anti-cancer drugs that are already approved for clinical application while allowing for the substantial improvement in the nanoagent effectiveness.


Subject(s)
Antineoplastic Agents , Nanoparticles , Mice , Animals , Liposomes , Clodronic Acid/pharmacology , Mononuclear Phagocyte System , Antineoplastic Agents/pharmacology , Doxorubicin/pharmacology
5.
Molecules ; 28(6)2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36985501

ABSTRACT

A small set of twelve compounds of a nitrofuran carboxamide chemotype was elaborated from a readily available 2,6-diazaspiro[3.4]octane building block, exploring diverse variants of the molecular periphery, including various azole substituents. The in vitro inhibitory activities of the synthesized compounds were assessed against Mycobacterium tuberculosis H37Rv. As a result, a remarkably potent antitubercular lead displaying a minimal inhibitory concentration of 0.016 µg/mL was identified.


Subject(s)
Mycobacterium tuberculosis , Nitrofurans , Octanes , Structure-Activity Relationship , Antitubercular Agents/pharmacology , Nitrofurans/pharmacology , Microbial Sensitivity Tests
6.
Int J Mol Sci ; 24(2)2023 Jan 04.
Article in English | MEDLINE | ID: mdl-36674469

ABSTRACT

The synthesis of novel fluoroquinolones, congeners of ciprofloxacin, which was inspired by earlier work on spirocyclic ciprofloxacin, is described. An antibacterial evaluation of the 11 fluoroquinolone compounds synthesized against the ESKAPE panel of pathogens in comparison with ciprofloxacin revealed that the more compact spirocycles in the fluoroquinolone periphery resulted in active compounds, while larger congeners gave compounds that displayed no activity at all. In the active cohort, the level of potency was comparable to that of ciprofloxacin. However, the spectrum of antibacterial activity was quite different, as the new compounds showed no activity against Pseudomonas aeruginosa. Among the prepared and tested compounds, the broadest range of activity (five pathogens of the six in the ESKAPE panel) and the highest level of activity were demonstrated by 1-yclopropyl-7-[8-(4-cyclopropyl-4H-1,2,4-triazol-3-yl)-6-azaspiro[3.4]oct-6-yl]-6-fluoro-4-oxo-1,4-dihydroquinoline-3-carboxylic acid, which is the lead compound nominated for further characterization and development.


Subject(s)
Anti-Bacterial Agents , Ciprofloxacin , Humans , Ciprofloxacin/pharmacology , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Fluoroquinolones , Pseudomonas aeruginosa
7.
Int J Mol Sci ; 23(19)2022 Sep 30.
Article in English | MEDLINE | ID: mdl-36232878

ABSTRACT

Starting from a screening hit, a set of analogs was synthesized based on a 4-(2-aminoethyl)piperidine core not associated previously with trace amine-associated receptor 1 (TAAR1) modulation in the literature. Several structure-activity relationship generalizations have been drawn from the observed data, some of which were corroborated by molecular modeling against the crystal structure of TAAR1. The four most active compounds (EC50 for TAAR1 agonistic activity ranging from 0.033 to 0.112 µM) were nominated for evaluation in vivo. The dopamine transporter knockout (DAT-KO) rat model of dopamine-dependent hyperlocomotion was used to evaluate compounds' efficacy in vivo. Out of four compounds, only one compound (AP163) displayed a statistically significant and dose-dependent reduction in hyperlocomotion in DAT-KO rats. As such, compound AP163 represents a viable lead for further preclinical characterization as a potential novel treatment option for disorders associated with increased dopaminergic function, such as schizophrenia.


Subject(s)
Dopamine Plasma Membrane Transport Proteins , Psychotic Disorders , Animals , Dopamine , Piperidines/pharmacology , Piperidines/therapeutic use , Rats , Receptors, G-Protein-Coupled/metabolism
8.
Int J Mol Sci ; 24(1)2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36613578

ABSTRACT

Nanostructured materials and systems find various applications in biomedical fields. Hybrid organo-inorganic nanomaterials are intensively studied in a wide range of areas, from visualization to drug delivery or tissue engineering. One of the recent trends in material science is biomimetic approaches toward the synthesis or modification of functional nanosystems. Here, we describe an approach toward multifunctional nanomaterials through the biomimetic polymerization of dopamine derivatives. Magnetite nanoparticles were modified with a combination of dopamine conjugates to give multifunctional magneto-fluorescent nanocomposites in one synthetic step. The obtained material showed excellent biocompatibility at concentrations up to 200 µg/mL and an in vivo biodistribution profile typical for nanosized formulations. The synthesized systems were conjugated with antibodies against HER2 to improve their selectivity toward HER2-positive cancer cells. The produced material can be used for dual magneto-optical in vivo studies or targeted drug delivery. The applied synthetic strategy can be used for the creation of various multifunctional hybrid nanomaterials in mild conditions.


Subject(s)
Magnetite Nanoparticles , Nanoparticles , Dopamine , Biomimetics , Tissue Distribution , Drug Delivery Systems , Coloring Agents
SELECTION OF CITATIONS
SEARCH DETAIL
...