Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Molecules ; 29(3)2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38338326

ABSTRACT

Deoxycholic acid derivatives containing various heterocyclic functional groups at C-3 on the steroid scaffold were designed and synthesized as promising dual tyrosyl-DNA phosphodiesterase 1 and 2 (TDP1 and TDP2) inhibitors, which are potential targets to potentiate topoisomerase poison antitumor therapy. The methyl esters of DCA derivatives with benzothiazole or benzimidazole moieties at C-3 demonstrated promising inhibitory activity in vitro against TDP1 with IC50 values in the submicromolar range. Furthermore, methyl esters 4d-e, as well as their acid counterparts 3d-e, inhibited the phosphodiesterase activity of both TDP1 and TDP2. The combinations of compounds 3d-e and 4d-e with low-toxic concentrations of antitumor drugs topotecan and etoposide showed significantly greater cytotoxicity than the compounds alone. The docking of the derivatives into the binding sites of TDP1 and TDP2 predicted plausible binding modes of the DCA derivatives.


Subject(s)
Phosphodiesterase Inhibitors , Phosphoric Diester Hydrolases , Phosphodiesterase Inhibitors/chemistry , Phosphoric Diester Hydrolases/metabolism , Models, Molecular , Deoxycholic Acid/pharmacology , Structure-Activity Relationship
2.
Int J Mol Sci ; 23(11)2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35682893

ABSTRACT

It is known that epoxide-bearing compounds display pronounced pharmacological activities, and the epoxidation of natural metabolites can be a promising strategy to improve their bioactivity. Here, we report the design, synthesis and evaluation of biological properties of αO-SM and ßO-SM, novel epoxides of soloxolone methyl (SM), a cyanoenone-bearing derivative of 18ßH-glycyrrhetinic acid. We demonstrated that the replacement of a double-bound within the cyanoenone pharmacophore group of SM with α- and ß-epoxide moieties did not abrogate the high antitumor and anti-inflammatory potentials of the triterpenoid. It was found that novel SM epoxides induced the death of tumor cells at low micromolar concentrations (IC50(24h) = 0.7-4.1 µM) via the induction of mitochondrial-mediated apoptosis, reinforced intracellular accumulation of doxorubicin in B16 melanoma cells, probably by direct interaction with key drug efflux pumps (P-glycoprotein, MRP1, MXR1), and the suppressed pro-metastatic phenotype of B16 cells, effectively inhibiting their metastasis in a murine model. Moreover, αO-SM and ßO-SM hampered macrophage functionality in vitro (motility, NO production) and significantly suppressed carrageenan-induced peritonitis in vivo. Furthermore, the effect of the stereoisomerism of SM epoxides on the mentioned bioactivities and toxic profiles of these compounds in vivo were evaluated. Considering the comparable antitumor and anti-inflammatory effects of SM epoxides with SM and reference drugs (dacarbazine, dexamethasone), αO-SM and ßO-SM can be considered novel promising antitumor and anti-inflammatory drug candidates.


Subject(s)
Antineoplastic Agents , Glycyrrhetinic Acid , Neoplasms , Animals , Anti-Inflammatory Agents/pharmacology , Antineoplastic Agents/pharmacology , Epoxy Compounds/pharmacology , Ethylene Oxide , Glycyrrhetinic Acid/pharmacology , Mice , Stereoisomerism
3.
Molecules ; 27(1)2022 Jan 04.
Article in English | MEDLINE | ID: mdl-35011529

ABSTRACT

When developing drugs against SARS-CoV-2, it is important to consider the characteristics of patients with different co-morbidities. People infected with HIV-1 are a particularly vulnerable group, as they may be at a higher risk than the general population of contracting COVID-19 with clinical complications. For such patients, drugs with a broad spectrum of antiviral activity are of paramount importance. Glycyrrhizinic acid (Glyc) and its derivatives are promising biologically active compounds for the development of such broad-spectrum antiviral agents. In this work, derivatives of Glyc obtained by acylation with nicotinic acid were investigated. The resulting preparation, Glycyvir, is a multi-component mixture containing mainly mono-, di-, tri- and tetranicotinates. The composition of Glycyvir was characterized by HPLC-MS/MS and its toxicity assessed in cell culture. Antiviral activity against three strains of SARS-CoV-2 was tested in vitro on Vero E6 cells by MTT assay. Glycyvir was shown to inhibit SARS-CoV-2 replication in vitro (IC502-8 µM) with an antiviral activity comparable to the control drug Remdesivir. In addition, Glycyvir exhibited marked inhibitory activity against HIV pseudoviruses of subtypes B, A6 and the recombinant form CRF63_02A (IC50 range 3.9-27.5 µM). The time-dependence of Glycyvir inhibitory activity on HIV pseudovirus infection of TZM-bl cells suggested that the compound interfered with virus entry into the target cell. Glycyvir is a promising candidate as an agent with low toxicity and a broad spectrum of antiviral action.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Glycyrrhizic Acid/chemistry , HIV Infections/drug therapy , HIV-1/drug effects , SARS-CoV-2/drug effects , Virus Replication , Animals , Antiviral Agents/chemical synthesis , COVID-19/virology , Chlorocebus aethiops , HIV Infections/virology , HeLa Cells , Humans , In Vitro Techniques , Vero Cells
4.
Molecules ; 27(1)2021 Dec 23.
Article in English | MEDLINE | ID: mdl-35011303

ABSTRACT

A series of deoxycholic acid (DCA) amides containing benzyl ether groups on the steroid core were tested against the tyrosyl-DNA phosphodiesterase 1 (TDP1) and 2 (TDP2) enzymes. In addition, 1,2,4- and 1,3,4-oxadiazole derivatives were synthesized to study the linker influence between a para-bromophenyl moiety and the steroid scaffold. The DCA derivatives demonstrated promising inhibitory activity against TDP1 with IC50 in the submicromolar range. Furthermore, the amides and the 1,3,4-oxadiazole derivatives inhibited the TDP2 enzyme but at substantially higher concentration. Tryptamide 5 and para-bromoanilide 8 derivatives containing benzyloxy substituent at the C-3 position and non-substituted hydroxy group at C-12 on the DCA scaffold inhibited both TDP1 and TDP2 as well as enhanced the cytotoxicity of topotecan in non-toxic concentration in vitro. According to molecular modeling, ligand 5 is anchored into the catalytic pocket of TDP1 by one hydrogen bond to the backbone of Gly458 as well as by π-π stacking between the indolyl rings of the ligand and Tyr590, resulting in excellent activity. It can therefore be concluded that these derivatives contribute to the development of specific TDP1 and TDP2 inhibitors for adjuvant therapy against cancer in combination with topoisomerase poisons.


Subject(s)
Deoxycholic Acid/analogs & derivatives , Deoxycholic Acid/chemistry , Phosphodiesterase Inhibitors/chemistry , Phosphoric Diester Hydrolases/chemistry , Binding Sites , Cell Line , Chemical Phenomena , Chemistry Techniques, Synthetic , Deoxycholic Acid/pharmacology , Enzyme Activation/drug effects , Humans , Models, Molecular , Molecular Conformation , Molecular Structure , Phosphodiesterase Inhibitors/chemical synthesis , Phosphodiesterase Inhibitors/pharmacology , Phosphoric Diester Hydrolases/metabolism , Protein Binding , Recombinant Proteins/chemistry , Structure-Activity Relationship
5.
Steroids ; 165: 108771, 2021 01.
Article in English | MEDLINE | ID: mdl-33221302

ABSTRACT

Para-Bromoanilides of deoxycholic acid with various functional groups on the steroid scaffold were designed as promising tyrosyl-DNA phosphodiesterase 1 (Tdp1) inhibitors. Tdp1 is a DNA repair enzyme, involved in removing DNA damage caused by topoisomerase I poisons; an important class of anticancer drugs. Thus, reducing the activity of Tdp1 can increase the efficacy of anticancer drugs in current use. Inhibitory activity in the low micromolar and submicromolar concentrations was observed with 3,12-dimethoxy para-bromoanilide 17 being the most active with an IC50 value of 0.27 µM. The activity of N-methyl para-bromoanilides was 3-4.8 times lower than of the corresponding para-bromoanilides. Increased potency of the ligands was seen with higher molecular weight and log P values. The ligands were evaluated for their cytotoxic potential in a panel of tumor cell lines; all were nontoxic to the A549 pulmonary adenocarcinoma cell line. However, derivatives containing a hydroxyl group at the 12th position were more toxic than their 12-hydroxyl group counterparts (acetoxy-, oxo- and methoxy- group) against HCT-116 human colon and HepG2 hepatocellular carcinomas. In addition, an N-methyl substitution led to an increase in toxicity for the HCT-116 and HepG2 cell lines. The excellent activity as well as low cytotoxicity, derivative 17 can be considered as a lead compound for further development.


Subject(s)
Phosphoric Diester Hydrolases , Antineoplastic Agents , Cell Line, Tumor , Humans , Models, Molecular , Structure-Activity Relationship
6.
Bioorg Med Chem Lett ; 30(24): 127653, 2020 12 15.
Article in English | MEDLINE | ID: mdl-33129992

ABSTRACT

We synthesized a series of amides with a benzo[d][1,3]dithiol core. The chemical library of compounds was tested for their cytotoxicity and inhibiting activity against influenza virus A/California/07/09 (H1N1)pdm09 in MDCK cells. For each compound, values of CC50, IC50 and selectivity index (SI) were determined. Compounds of this structure type were for the first time found to exhibit anti-influenza activity. The structure of an amide substituent in the tested compounds was demonstrated to have a significant effect on their activity against the H1N1 influenza virus and cytotoxicity. Compound 4d has a high selectivity index of about 30. 4d was shown to be most potent at early stages of viral cycle. In direct fusogenic assay it demonstrated dose-dependent activity against fusogenic activity of hemagglutinin of influenza virus. Based on molecular docking and regression analysis data, viral hemagglutinin was suggested as possible target for these new antiviral agents.


Subject(s)
Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Influenza A Virus, H1N1 Subtype/drug effects , Toluene/analogs & derivatives , Animals , Dogs , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Humans , Influenza A Virus, H1N1 Subtype/metabolism , Influenza, Human/drug therapy , Madin Darby Canine Kidney Cells , Molecular Docking Simulation , Orthomyxoviridae Infections/drug therapy , Toluene/chemistry , Toluene/pharmacology
7.
Int J Mol Sci ; 21(10)2020 May 15.
Article in English | MEDLINE | ID: mdl-32429154

ABSTRACT

A series of novel 18ßH-glycyrrhetinic acid (GA) derivatives containing 3'-(alkyl/phenyl/pyridin(-2″, -3″, and -4″)-yl)-1',2',4'-oxadiazole moieties at the C-30 position were synthesized by condensation of triterpenoid's carboxyl group with corresponding amidoximes and further cyclization. Screening of the cytotoxicity of novel GA derivatives on a panel of tumor cell lines showed that the 3-acetoxy triterpenoid intermediates-O-acylated amidoxime 3a-h-display better solubility under bioassay conditions and more pronounced cytotoxicity compared to their 1',2',4'-oxadiazole analogs 4f-h (median IC50 = 7.0 and 49.7 µM, respectively). Subsequent replacement of the 3-acetoxy group by the hydroxyl group of pyridin(-2″, 3″, and -4″)-yl-1',2',4'-oxadiazole-bearing GA derivatives produced compounds 5f-h, showing the most pronounced selective toxicity toward tumor cells (median selectivity index (SI) > 12.1). Further detailed analysis of the antitumor activity of hit derivative 5f revealed its marked proapoptotic activity and inhibitory effects on clonogenicity and motility of HeLa cervical carcinoma cells in vitro, and the metastatic growth of B16 melanoma in vivo. Additionally, the comprehensive in silico study revealed intermediate 3d, bearing the tert-butyl moiety in O-acylated amidoxime, as a potent anti-inflammatory candidate, which was able to effectively inhibit inflammatory response induced by IFNγ in macrophages in vitro and carrageenan in murine models in vivo, probably by primary interactions with active sites of MMP9, neutrophil elastase, and thrombin. Taken together, our findings provide a basis for a better understanding of the structure-activity relationship of 1',2',4'-oxadiazole-containing triterpenoids and reveal two hit molecules with pronounced antitumor (5f) and anti-inflammatory (3d) activities.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Antineoplastic Agents/pharmacology , Glycyrrhetinic Acid/pharmacology , Oxadiazoles/chemistry , Oximes/chemical synthesis , Oximes/pharmacology , Acylation , Anti-Inflammatory Agents/chemistry , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Carrageenan , Caspases/metabolism , Cell Death/drug effects , Cell Proliferation/drug effects , Glycyrrhetinic Acid/chemical synthesis , Glycyrrhetinic Acid/chemistry , HeLa Cells , Humans , Inflammation/pathology , Melanoma, Experimental/pathology , Mitochondria/drug effects , Mitochondria/metabolism , Neoplasm Metastasis , Oximes/chemistry
8.
Molecules ; 23(3)2018 Mar 17.
Article in English | MEDLINE | ID: mdl-29562592

ABSTRACT

An Important task in the treatment of oncological and neurodegenerative diseases is the search for new inhibitors of DNA repair system enzymes. Tyrosyl-DNA phosphodiesterase 1 (Tdp1) is one of the DNA repair system enzymes involved in the removal of DNA damages caused by topoisomerase I inhibitors. Thus, reducing the activity of Tdp1 can increase the effectiveness of currently used anticancer drugs. We describe here a new class of semisynthetic small molecule Tdp1 inhibitors based on the bile acid scaffold that were originally identified by virtual screening. The influence of functional groups of bile acids (hydroxy and acetoxy groups in the steroid framework and amide fragment in the side chain) on inhibitory activity was investigated. In vitro studies demonstrate the ability of the semisynthetic derivatives to effectively inhibit Tdp1 with IC50 up to 0.29 µM. Furthermore, an excellent fit is realized for the ligands when docked into the active site of the Tdp1 enzyme.


Subject(s)
Bile Acids and Salts/chemistry , Bile Acids and Salts/pharmacology , Phosphodiesterase Inhibitors/pharmacology , Phosphoric Diester Hydrolases/metabolism , Bile Acids and Salts/chemical synthesis , Binding Sites , Drug Evaluation, Preclinical , HCT116 Cells , Humans , MCF-7 Cells , Molecular Docking Simulation , Niacinamide/analogs & derivatives , Niacinamide/chemical synthesis , Niacinamide/chemistry , Niacinamide/pharmacology , Phosphodiesterase Inhibitors/chemical synthesis , Phosphodiesterase Inhibitors/chemistry , Tryptamines/chemical synthesis , Tryptamines/chemistry , Tryptamines/pharmacology
9.
Bioorg Med Chem ; 23(9): 2044-52, 2015 May 01.
Article in English | MEDLINE | ID: mdl-25819333

ABSTRACT

Tyrosyl-DNA phosphodiesterase 1 (TDP1) is a promising target for antitumor therapy based on Top1 poison-mediated DNA damage. Several novel benzopentathiepines were synthesized and tested as inhibitors of TDP1 using a new oligonucleotide-based fluorescence assay. The benzopentathiepines have IC50 values in the range of 0.2-6.0 µM. According to the molecular modeling, the conformational flexibility of the dibutylamine group of the most effective inhibitor (3d) allows it to occupy an advantageous position for effective binding compared to its cyclic counterparts. The study of cytotoxicity of these compounds revealed that all compounds cause an apoptotic cell death in MCF-7 and Hep G2 cells. Therefore the new class of very effective inhibitors of TDP1 was elaborated.


Subject(s)
Dibenzothiepins/pharmacology , Phosphodiesterase Inhibitors/pharmacology , Phosphoric Diester Hydrolases/metabolism , Dibenzothiepins/chemical synthesis , Dibenzothiepins/chemistry , Dose-Response Relationship, Drug , Humans , Models, Molecular , Molecular Structure , Phosphodiesterase Inhibitors/chemical synthesis , Phosphodiesterase Inhibitors/chemistry , Structure-Activity Relationship
10.
Cardiovasc Hematol Agents Med Chem ; 11(3): 207-10, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23547903

ABSTRACT

Cardioprotective effect of resveratrol and resveratroloside was determined in ischemia-reperfusion experiments on rats. It was found that single intraperitoneal administration of any compound (10 mg/kg) followed by 30-min ischemia and 120-min reperfusion resulted in statistically significant decrease of myocardial infarct area (55.0±4.0% for control group; 40.7±4.4% for the group 1 received resveratrol; 41.6±4.8% for the group 2 received resveratroloside). The cardioprotective effect of resveratroloside was detected for the first time.


Subject(s)
Cardiotonic Agents/therapeutic use , Glucosides/therapeutic use , Myocardial Infarction/drug therapy , Stilbenes/therapeutic use , Animals , Cardiotonic Agents/administration & dosage , Dose-Response Relationship, Drug , Glucosides/chemistry , Infusions, Parenteral , Male , Rats , Rats, Wistar , Reference Standards , Resveratrol , Stilbenes/chemistry , Treatment Outcome
11.
Bioorg Med Chem Lett ; 22(23): 7060-4, 2012 Dec 01.
Article in English | MEDLINE | ID: mdl-23099095

ABSTRACT

Influenza is a widespread respiratory infection. Every year it causes epidemics, quickly spreading from country to country, or even pandemics, involving a significant part of the human population of the earth. Being a highly variable infection, influenza easy accumulates the resistance mutations to many antivirals. Usnic acid, a dibenzofuran originally isolated from lichens belongs to the secondary metabolites and has a broad spectrum of biological activity. In humans, it can act as an anti-inflammatory, antimitotic, antineoplasic, antibacterial, and antimycotic agent. In this work we studied for the first time the antiviral activity of usnic acid and its derivatives against the pandemic influenza virus A(H1N1)pdm09. A total of 26 compounds representing (+) and (-) isomers of usnic acid and their derivates were tested for cytotoxicity and anti-viral activity in MDCK cells by microtetrazolium test and virus yield assay, respectively. Based on the results obtained, 50% cytotoxic dose (CTD(50)) and 50% effective dose (ED(50)) and selectivity index (SI) were calculated for each compound. Eleven of them were found to have SI higher than 10 (highest value 37.3). Absolute configuration was shown to have critical significance for the anti-viral activity. With minor exceptions, in the pair of enantiomers, (-)-usnic acid was more active comparing to (+)-isomer, but its biological activity was reversed after the usnic acid was chemically modified. Based on the obtained results, derivatives of usnic acid should be considered as prospective compounds for further optimization as anti-influenza substances.


Subject(s)
Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Benzofurans/chemistry , Influenza A Virus, H1N1 Subtype/drug effects , Animals , Anti-Inflammatory Agents/chemical synthesis , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Antiviral Agents/chemical synthesis , Benzofurans/chemical synthesis , Benzofurans/toxicity , Cell Line , Cell Survival/drug effects , Dogs , Humans , Macrophages/drug effects , Madin Darby Canine Kidney Cells , Mice , Nitric Oxide Synthase Type II/metabolism , Stereoisomerism , Structure-Activity Relationship , Transcription Factor RelA/metabolism , Tumor Necrosis Factor-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...