Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Dev Med Child Neurol ; 39(1): 40-4, 1997 Jan.
Article in English | MEDLINE | ID: mdl-9003728

ABSTRACT

Children with excessive femoral anteversion frequently walk with abnormal internal rotation of the hip. The authors hypothesized that excessive anteversion decreases the abduction moment arm of the gluteus medius and that this moment arm is restored with internal rotation; hence internal rotation may be a compensatory mechanism to preserve abduction capacity. To test this hypothesis a three-dimensional computer model of an adult lower limb was developed to determine how changes in femoral anteversion angle, neck-shaft angle, and hip internal rotation angle affect the abduction moment arm of the gluteus medius. Analysis of the model revealed that anteversion and valgus deformities of the femur can decrease the abduction moment arm of the gluteus medius substantially. In particular, increasing the anteversion angle of the model by 30 to 40 degrees caused a 40 to 50% decrease in the abduction moment arm of the gluteus medius - enough to impair walking. Internal rotation of the hip by 30 degrees restored the abduction moment arm of the gluteus medius to within 5% of the moment arm of the model in its normal, undeformed state. These results support the authors' hypothesis and are consistent with the theory that internal rotation may be a compensatory mechanism adopted by children with femoral deformities to achieve the abduction moment arm needed for walking.


Subject(s)
Femur/physiopathology , Gait , Movement Disorders/physiopathology , Walking , Biomechanical Phenomena , Humans , Motor Skills , Movement Disorders/diagnosis
2.
Clin Orthop Relat Res ; (328): 137-46, 1996 Jul.
Article in English | MEDLINE | ID: mdl-8653946

ABSTRACT

This study examines the effects of a superiorly placed hip center on the strength of the abductor muscles. A 3-dimensional computer model of the hip and the surrounding musculature was used to calculate the moment arms, forces, and moments generated when the hip abductor muscles are maximally activated. A representation of a hip prosthesis was implanted into the computer model with altered hip center positions and a range of prosthetic neck lengths. Analysis of these simulated hip replacements demonstrated that superolateral placement of the hip center (2 cm superior and 2 cm lateral) decreases the moment arms of the hip abductor muscles by an average of 28%. This decrease in moment arm cannot be restored by increasing prosthetic neck length, resulting in an unrecoverable loss of abduction strength with superolateral displacement. By contrast, a 2-cm superior displacement of the hip center changes the moment arms and force generating capacities of the abductors by less than 10% if prosthetic neck length is increased to compensate for decreased muscle length. The results of this study suggest that superior positioning of the hip center, without lateral placement, does not have major, adverse effects on abduction moment arms or force generating capacities when the neck length is appropriately increased.


Subject(s)
Computer Simulation , Hip Prosthesis/methods , Muscle, Skeletal/physiology , Biophysical Phenomena , Biophysics , Humans , Treatment Outcome
3.
J Orthop Res ; 12(6): 860-70, 1994 Nov.
Article in English | MEDLINE | ID: mdl-7983561

ABSTRACT

The purpose of this study was to determine the effects of superior displacement of the hip center and changes in three prosthetic parameters (neck length, neck-stem angle, and anteversion angle) on the capacity of muscles to generate force and moment about the hip. A three-dimensional model that calculates the maximum isometric forces and moments generated by 25 muscles crossing the hip over a wide range of body positions was used to evaluate the effects of a 2 cm elevation of the hip center and changes in the prosthetic parameters. After superior displacement of the hip center, the neck length was increased from 0 to 3 cm, the neck-stem angle was varied between 110 and 150 degrees, and the anteversion angle was varied between 0 and 40 degrees. Our analysis showed that a 2 cm superior displacement of the hip center would decrease the moment-generating capacity of the four muscle groups studied (abductors, adductors, flexors, and extensors) if neck length were not increased to compensate for decreased muscle length. In the computer model of an adult man that we used, a 2 cm increase in neck length restored the moment-generating capacity of the muscles by increasing muscle length and force-generating capacity. However, a 3 cm increase in neck length increased passive muscle forces substantially, which potentially could limit joint motion. An increased neck-stem angle (i.e. a valgus neck) decreased the abduction moment arm but increased the moment-generating capacity of the other muscle groups. A change in the anteversion angle from 0 to 40 degrees had a relatively small effect on the isometric moment-generating capacity of the muscles studied.


Subject(s)
Hip Joint/physiology , Hip Prosthesis , Muscles/physiology , Biomechanical Phenomena , Humans , Models, Biological
SELECTION OF CITATIONS
SEARCH DETAIL
...