Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Front Immunol ; 13: 857692, 2022.
Article in English | MEDLINE | ID: mdl-35401524

ABSTRACT

TnP is a family of patented synthetic peptides which is in a preclinical development stage with valuable potential therapeutic indication for multiple sclerosis (MS), an autoimmune demyelinating disease of the central nervous system (CNS). The use of a preclinical animal model, such as experimental autoimmune encephalomyelitis (EAE) has deepened our knowledge of the immunomodulatory functions of TnP as a drug. We have shown that TnP possesses a disease suppressive function in EAE, ameliorating disease severity by 40% and suppressing the accumulation of T helper (Th)1- and Th17-producing lymphocytes (by 55% and 60%, respectively) in CNS along with activated microglia/macrophages populations (by 33% and 50%, respectively), and also conferred a protective effect anticipating the remyelination process to day 66 compared to day 83 of untreated cuprizone-mice. Here we expanded our knowledge about its effects compared with current first-line disease-modifying therapies (DMT). We demonstrated that prophylactic treatment with TnP generated similar protection to betaseron (30%) or was more effective than glatiramer (44% versus 6%) or fingolimod (50% versus 19%) against the development of clinical symptoms. Although TnP controlled the leukocyte infiltration (87% versus 82%) into demyelinated areas of the spinal cord in the same way as betaseron and fingolimod, it was more effective (72% to 78% decrease) in the long-term control of neuronal degeneration compared to them. Also, when compared to glatiramer, TnP was more efficient in reversing leukocytes infiltration into the spinal cord (55% versus 24%), as well as induced a higher percentage of regulatory cells in spleen (2.9-fold versus 2.3-fold increase over vehicle-treated EAE mice) an in the spinal cord (8-fold versus 6-fold increase over vehicle-treated EAE mice). This specialized TnP profile for inducing immune tolerance and neuronal regeneration has significant therapeutic potential for the treatment of MS and other autoimmune diseases.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Multiple Sclerosis , Animals , Fingolimod Hydrochloride/therapeutic use , Glatiramer Acetate/therapeutic use , Interferon beta-1b/adverse effects , Mice , Mice, Inbred C57BL , Multiple Sclerosis/drug therapy , Peptides/therapeutic use
2.
Front Immunol, v. 13, 857692, mar. 2022
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4288

ABSTRACT

TnP is a family of patented synthetic peptides which is in a preclinical development stage with valuable potential therapeutic indication for multiple sclerosis (MS), an autoimmune demyelinating disease of the central nervous system (CNS). The use of a preclinical animal model, such as experimental autoimmune encephalomyelitis (EAE) has deepened our knowledge of the immunomodulatory functions of TnP as a drug. We have shown that TnP possesses a disease suppressive function in EAE, ameliorating disease severity by 40% and suppressing the accumulation of T helper (Th)1- and Th17-producing lymphocytes (by 55% and 60%, respectively) in CNS along with activated microglia/macrophages populations (by 33% and 50%, respectively), and also conferred a protective effect anticipating the remyelination process to day 66 compared to day 83 of untreated cuprizone-mice. Here we expanded our knowledge about its effects compared with current first-line disease-modifying therapies (DMT). We demonstrated that prophylactic treatment with TnP generated similar protection to betaseron (30%) or was more effective than glatiramer (44% versus 6%) or fingolimod (50% versus 19%) against the development of clinical symptoms. Although TnP controlled the leukocyte infiltration (87% versus 82%) into demyelinated areas of the spinal cord in the same way as betaseron and fingolimod, it was more effective (72% to 78% decrease) in the long-term control of neuronal degeneration compared to them. Also, when compared to glatiramer, TnP was more efficient in reversing leukocytes infiltration into the spinal cord (55% versus 24%), as well as induced a higher percentage of regulatory cells in spleen (2.9-fold versus 2.3-fold increase over vehicle-treated EAE mice) an in the spinal cord (8-fold versus 6-fold increase over vehicle-treated EAE mice). This specialized TnP profile for inducing immune tolerance and neuronal regeneration has significant therapeutic potential for the treatment of MS and other autoimmune diseases.

3.
Brain Behav Immun ; 73: 441-449, 2018 10.
Article in English | MEDLINE | ID: mdl-29883598

ABSTRACT

Electrical stimulation of the vagus nerve (VNS) is a novel strategy used to treat inflammatory conditions. Therapeutic VNS activates both efferent and afferent fibers; however, the effects attributable to vagal afferent stimulation are unclear. Here, we tested if selective activation of afferent fibers in the abdominal vagus suppresses systemic inflammation. In urethane-anesthetized rats challenged with lipopolysaccharide (LPS, 60 µg/kg, i.v.), abdominal afferent VNS (2 Hz for 20 min) reduced plasma tumor necrosis factor alpha (TNF) levels 90 min later by 88% compared with unmanipulated animals. Pre-cutting the cervical vagi blocked this anti-inflammatory action. Interestingly, the surgical procedure to expose and prepare the abdominal vagus for afferent stimulation ('vagal manipulation') also had an anti-inflammatory action. Levels of the anti-inflammatory cytokine IL-10 were inversely related to those of TNF. Prior bilateral section of the splanchnic sympathetic nerves reversed the anti-inflammatory actions of afferent VNS and vagal manipulation. Sympathetic efferent activity in the splanchnic nerve was shown to respond reflexly to abdominal vagal afferent stimulation. These data demonstrate that experimentally activating abdominal vagal afferent fibers suppresses systemic inflammation, and that the efferent neural pathway for this action is in the splanchnic sympathetic nerves.


Subject(s)
Inflammation/metabolism , Splanchnic Nerves/physiology , Vagus Nerve/physiology , Abdomen/innervation , Afferent Pathways/metabolism , Afferent Pathways/physiology , Animals , Anti-Inflammatory Agents/pharmacology , Cytokines , Disease Models, Animal , Inflammation/immunology , Interleukin-10/analysis , Interleukin-10/blood , Lipopolysaccharides/pharmacology , Male , Neural Pathways , Rats , Rats, Sprague-Dawley , Splanchnic Nerves/immunology , Sympathetic Nervous System , Tumor Necrosis Factor-alpha/analysis , Tumor Necrosis Factor-alpha/blood , Vagus Nerve/immunology , Vagus Nerve Stimulation/methods
4.
PLoS One ; 12(2): e0171796, 2017.
Article in English | MEDLINE | ID: mdl-28235052

ABSTRACT

The pathological condition of multiple sclerosis (MS) relies on innate and adaptive immunity. New types of agents that beneficially modify the course of MS, stopping the progression and repairing the damage appear promising. Here, we studied TnP, a small stable synthetic peptide derived from fish venom in the control of inflammation and demyelination in experimental autoimmune encephalomyelitis as prophylactic treatment. TnP decreased the number of the perivascular infiltrates in spinal cord, and the activity of MMP-9 by F4/80+ macrophages were decreased after different regimen treatments. TnP reduces in the central nervous system the infiltration of IFN-γ-producing Th1 and IL-17A-producing Th17 cells. Also, treatment with therapeutic TnP promotes the emergence of functional Treg in the central nervous system entirely dependent on IL-10. Therapeutic TnP treatment accelerates the remyelination process in a cuprizone model of demyelination. These findings support the beneficial effects of TnP and provides a new therapeutic opportunity for the treatment of MS.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental/drug therapy , Fish Venoms/chemistry , Immunologic Factors/pharmacology , Peptides/pharmacology , Spinal Cord/drug effects , T-Lymphocytes, Regulatory/drug effects , Amino Acid Sequence , Animals , Antigens, Differentiation/genetics , Antigens, Differentiation/immunology , Brazil , Cuprizone , Disease Models, Animal , Encephalomyelitis, Autoimmune, Experimental/chemically induced , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/pathology , Female , Gene Expression Regulation , Immunologic Factors/isolation & purification , Interferon-gamma/genetics , Interferon-gamma/immunology , Interleukin-10/genetics , Interleukin-10/immunology , Interleukin-17/genetics , Interleukin-17/immunology , Macrophages/drug effects , Macrophages/immunology , Macrophages/pathology , Matrix Metalloproteinase 9/genetics , Matrix Metalloproteinase 9/immunology , Mice , Multiple Sclerosis/drug therapy , Multiple Sclerosis/immunology , Multiple Sclerosis/pathology , Peptides/isolation & purification , Perciformes/metabolism , Spinal Cord/immunology , Spinal Cord/pathology , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/pathology , Th1 Cells/drug effects , Th1 Cells/immunology , Th1 Cells/pathology , Th17 Cells/drug effects , Th17 Cells/immunology , Th17 Cells/pathology
5.
PLoS One ; 12(2): e0171796, 2017.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib15427

ABSTRACT

The pathological condition of multiple sclerosis (MS) relies on innate and adaptive immunity. New types of agents that beneficially modify the course of MS, stopping the progression and repairing the damage appear promising. Here, we studied TnP, a small stable synthetic peptide derived from fish venom in the control of inflammation and demyelination in experimental autoimmune encephalomyelitis as prophylactic treatment. TnP decreased the number of the perivascular infiltrates in spinal cord, and the activity of MMP-9 by F4/80+ macrophages were decreased after different regimen treatments. TnP reduces in the central nervous system the infiltration of IFN-gamma-producing Th1 and IL-17A-producing Th17 cells. Also, treatment with therapeutic TnP promotes the emergence of functional Treg in the central nervous system entirely dependent on IL-10. Therapeutic TnP treatment accelerates the remyelination process in a cuprizone model of demyelination. These findings support the beneficial effects of TnP and provides a new therapeutic opportunity for the treatment of MS.

6.
PLoS One ; 8(8): e71185, 2013.
Article in English | MEDLINE | ID: mdl-23940714

ABSTRACT

This study was undertaken to gain better insights into the role of TLRs and MyD88 in the development and differentiation of memory B cells, especially of ASC, during the Th2 polarized memory response induced by Natterins. Our in vivo findings demonstrated that the anaphylactic IgG1 production is dependent on TLR2 and MyD88 signaling, and that TLR4 acts as adjuvant accelerating the synthesis of high affinity-IgE. Also, TLR4 (MyD88-independent) modulated the migration of innate-like B cells (B1a and B2) out of the peritoneal cavity, and the emigration from the spleen of B1b and B2 cells. TLR4 (MyD88-independent) modulated the emigration from the spleen of Bmem as well as ASC B220(pos). TLR2 triggered to the egress from the peritoneum of Bmem (MyD88-dependent) and ASC B220(pos) (MyD88-independent). We showed that TLR4 regulates the degree of expansion of Bmem in the peritoneum (MyD88-dependent) and in BM (MyD88-independent) as well as of ASC B220(neg) in the spleen (MyD88-independent). TLR2 regulated the intensity of the expansion of Bmem (MyD88-independent) and ASC B220(pos) (MyD88-dependent) in BM. Finally, TLR4 signals sustained the longevity of ASC B220(pos) (MyD88-independent) and ASC B220(neg) into the peritoneum (MyD88-dependent) and TLR2 MyD88-dependent signaling supported the persistence of B2 cells in BM, Bmem in the spleen and ASC B220(neg) in peritoneum and BM. Terminally differentiated ASC B220(neg) required the cooperation of both signals through TLR2/TLR4 via MyD88 for longevity in peritoneum, whereas Bmem required only TLR2/MyD88 to stay in spleen, and ASC B220(pos) rested in peritoneum dependent on TLR4 signaling. Our data sustain that earlier events on memory B cells differentiation induced in secondary immune response against Natterins, after secondary lymph organs influx and egress, may be the key to determining peripheral localization of innate-like B cells and memory B cells as ASC B220(pos) and ASC B220(neg).


Subject(s)
Antibody-Producing Cells/physiology , Cell Differentiation/genetics , Myeloid Differentiation Factor 88/physiology , Toll-Like Receptor 2/physiology , Toll-Like Receptor 4/physiology , Animals , Cell Differentiation/immunology , Cell Survival/genetics , Cell Survival/immunology , Cells, Cultured , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C3H , Mice, Inbred C57BL , Mice, Knockout , Signal Transduction/genetics , Signal Transduction/immunology
7.
PLoS One ; 8(6): e67135, 2013.
Article in English | MEDLINE | ID: mdl-23840604

ABSTRACT

The generation of long-lived antibody-secreting cells (ASC) and memory B cells are critical events for an effective vaccine and the choice of adjuvant can influence these processes. Various cellular and molecular mechanism involved in the protease action that determine Th2 responses have been identified. However, direct or indirect actions in the regulation of the induction, survival and longevity of ASC in differential compartments remain largely unknown. We investigated whether the proteolytic activity of proteins are determinant for the modulation of the memory immune response in mice, promoting the differentiation of memory B cells to terminally differentiated end stage cells. Here, we show that the proteolytic activity of Natterins, from the venom of Thalassophryne nattereri Brazilian fish, besides inducing a Th2 response with plasmatic titers of high-affinity antigen-specific IgE over extended periods is sufficient for the generation of signals that contribute to the formation of a survival niche in the spleen, essential for the longevity of the main subtype of ASC with B220(neg) phenotype.


Subject(s)
B-Lymphocytes/immunology , Fish Proteins/immunology , Immunity, Humoral , Peptide Hydrolases/immunology , Spleen/immunology , Th2 Cells/immunology , Animals , Antibody Formation , Bone Marrow Cells/immunology , Cell Differentiation , Cells, Cultured , Fish Venoms/enzymology , Immunity, Cellular , Immunity, Innate , Immunologic Memory , Male , Mice , Mice, Inbred BALB C , Proteolysis , Spleen/cytology
10.
Int Immunopharmacol ; 14(4): 513-22, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22940186

ABSTRACT

Recently our group described that Nattectin, a C-type lectin of the venom of Thalassophryne nattereri shows a potent pro-inflammatory capacity. Here, we demonstrated that Nattectin is able to induce M1 macrophage marker iNOS, and up-regulate the expression of MHC class II, CD80, CD86 and CD40 molecules. The increase in MHC class II and CD49a integrin expression with MMP-9 production and endocytic capacity depend on lectin function of Nattectin. Moreover, the polarization of peritoneal and bone marrow-derived macrophages induced by Nattectin to M1 profile is dependent on Th1 cytokines (IL-12 and IFN-γ), and negatively regulated by Th2 cytokines (IL-4, IL-10 and IL-13). Also we reveal that IL-4 play a dual role in this polarization: a regular action of IL-4 was seen in the negative regulation of the CD40 expression, but an unexpected positive regulation was seen in the expression of CCR7 and MHC class II. Finally, our in vivo studies showed that the influx of neutrophils and small peritoneal macrophage--F4/80(low)MHCII(hi) induced by Nattectin is totally dependent on IL-4 and IFN-γ cytokines. Furthermore, the induction of IL-6 release is negatively regulated by IL-4 and positively regulated by IL-12 and IFN-γ. Together, the results allowed us to expand the knowledge about the regulation of macrophage activation, as well as confirmed the ability of Nattectin, a fish C-type lectin, as an important immunomodulatory agent.


Subject(s)
Batrachoidiformes/physiology , Fish Venoms/chemistry , Interferon-gamma/metabolism , Interleukin-4/metabolism , Lectins, C-Type/metabolism , Macrophages/drug effects , Macrophages/metabolism , Animals , Bone Marrow Cells/drug effects , Female , Fish Venoms/metabolism , Interferon-gamma/genetics , Interleukin-10/genetics , Interleukin-10/metabolism , Interleukin-13/genetics , Interleukin-13/metabolism , Interleukin-4/genetics , Lectins, C-Type/chemistry , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL
11.
Cytokine ; 59(2): 335-51, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22633287

ABSTRACT

Prolonged survival of long-lived antibody-secreting cells in the BM has been implicated as a key component of long-term humoral immunity. The current study was designed to uncover the extrinsic signals required for the generation and maintenance of ASC in several niches (peritoneum, spleen and bone-marrow). Our results show that protein mixture of the Thalassophryne nattereri venom induced a chronic Th2 humoral response that is characterized by splenic hyperplasia with GC formation and venom retention by follicular DCs. Retention of B1a in the BM were observed. In the late phase (120d) of chronic venom-response the largest pool of ASC into the peritoneal cavity consisted of B220(neg)CD43(high) phenotype; the largest pool of ASC into spleen was constituted by B220 positive cells (B220(high) and B220(low)), whereas the largest pool of ASC into in the BM was constituted by the B220(high)CD43(low) phenotype; and finally, terminally differentiated cells (B220(neg)CD43(high)) were only maintained in the inflamed peritoneal cavity in late phase. After 120d a sustained production of cytokines (KC, IL-5, TNF-α, IL-6, IL-17A and IL-23) and leukocytes recruitment (eosinophils, mast cells, and neutrophils) were induced. IL-5- and IL-17A-producing CD4+ CD44+ CD40L+ Ly6C+ effector memory T cells were also observed in peritoneal cavity. Finally, treatment of venom-mice with anti-IL-5- and anti-IL17A-neutralizing mAbs abolished the synthesis of specific IgE, without modifying the splenic hyperplasia or GC formation. In addition, IL-5 and IL-17A negatively regulated the expansion of B1a in peritoneal cavity and BM, and promoted the differentiation of these cells in spleen. And more, IL-5 and IL-17A are sufficient for the generation of ASC B220(neg) in the peritoneal cavity and negatively regulate the number of ASC B220(pos), confirming that the hierarchical process of ASC differentiation triggered by venom needs the signal derived from IL-5 and IL-17A.


Subject(s)
Antibody-Producing Cells/immunology , Antibody-Producing Cells/pathology , Cell Differentiation/immunology , Immunoglobulin E/immunology , Inflammation/pathology , Interleukin-17/immunology , Interleukin-5/immunology , Animals , Antibody Formation/drug effects , Antibody Specificity/drug effects , Antibody Specificity/immunology , Antigens/immunology , Bone Marrow Cells/drug effects , Bone Marrow Cells/immunology , Bone Marrow Cells/pathology , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/immunology , Cell Differentiation/drug effects , Cell Survival/drug effects , Cytokines/metabolism , Immunity, Humoral/drug effects , Immunoglobulin E/biosynthesis , Immunologic Memory/drug effects , Inflammation/immunology , Inflammation Mediators/metabolism , Male , Marine Toxins/toxicity , Mice , Mice, Inbred BALB C , Organ Specificity/drug effects , Peritoneal Cavity/pathology , Spleen/drug effects , Spleen/immunology , Spleen/pathology , Th2 Cells/drug effects , Th2 Cells/immunology , Time Factors
14.
Toxicon ; 58(6-7): 509-17, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21896281

ABSTRACT

Combined proteomic and transcriptomic approaches to study the composition of the venom of Thalassophryne nattereri venomous fish revealed the primary structures of the major toxins as a family of proteases natterins, never described on venoms and a C-type lectin nattectin. To gain new insights into the mechanisms of venom pathogenesis and to further elucidate the role of its major toxins, the natterins and nattectin, we undertook in vitro investigations using these isolated toxins. Here we demonstrated the specific ability of the nattectin to bind types I and V collagen and natterins to bind and cleave type I collagen as well as type IV collagen, disrupting cell attachment and HeLa cells survival. Natterins have cytotoxic effect on both adherent cells or at in suspension, showing direct induction of necrosis that is followed by cell detachment. Nattectin improves integrin-mediated HeLa cell adhesion and resistance to apoptosis by its binding to RGD-dependent integrins, especially the ß1 subunit. Based on our studies we now report that extracellular matrix (ECM) components as well as the integrin ß1 subunit are targets for the natterins and nattectin. The ECM degradation or remodeling activities exerted by these toxins affect cell-cell and cell-ECM adhesion and survival and impair inflammatory cell migration into inflamed tissues.


Subject(s)
Cell Communication/drug effects , Extracellular Matrix/drug effects , Fish Venoms/toxicity , Kallikreins/toxicity , Lectins, C-Type , Toxins, Biological/toxicity , Animals , Cell Adhesion/drug effects , Cell Movement/drug effects , Cell Survival/drug effects , Fish Venoms/analysis , HeLa Cells , Humans , Integrins/antagonists & inhibitors
15.
Int Immunopharmacol ; 11(10): 1546-56, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21621644

ABSTRACT

Considerable efforts are currently focused on the biology of DC in view of their possible clinical use as adjuvant for the generation of antigen-specific immunity and lifelong immunologic memory or for the treatment of tumors. We assessed the role of Nattectin a C-type lectin identified in the Thalassophryne nattereri fish venom in DC maturation. Nattectin induced a significant neutrophilic recruitment into peritoneal cavity of mice, followed by macrophages, with lipidic mediators and IL-12 p70 synthesis. Macrophages derived from 7day-Nattectin mice were CD11c+CD11b(low)Ly6(high)F4/80R(high) and express high levels of MHC class II and CD80 molecules. Culture of peritoneal exudates derived macrophages from 7day Nattectin-mice and immature BMDCs with Nattectin markedly increased the surface expression of CD40, CD80, CD86, and MHC class II in a dose-dependent manner, and the production of MMP-2 and MMP-9 distributed in nucleus and cytoplasm of cells, that was associated with strong activity in the culture supernatant. Nattectin treated DCs secreted IL-12 p70 and IL-10. The Nattectin-treated BMDC or macrophage-derived DCs were highly efficient at Ag capture. The specific immune response elicited by Nattectin was characterized by the production of specific antibodies IgG1 and mainly IgG2a with IL-10 and IFN-γ synthesis by splenic cells. These results enable us to address that Nattectin induces the recruitment of Ly6C(high) monocytes into the peritoneum, which exhibit a pro-inflammatory profile, where they differentiate into proliferating F4/80R(high) macrophages. Macrophage-derived DCs mature in the presence of the cytokine milieu generated against Nattectin, exhibiting T cell co-stimulatory molecule expression and induced a Th1 polarized response.


Subject(s)
Batrachoidiformes , Cytokines/metabolism , Dendritic Cells/drug effects , Lectins, C-Type/administration & dosage , Macrophages/drug effects , Animals , Antigen Presentation/drug effects , Antigens, Differentiation/metabolism , Batrachoidiformes/immunology , Cell Transdifferentiation/drug effects , Cells, Cultured , Cellular Microenvironment/drug effects , Cellular Microenvironment/immunology , Cytokines/genetics , Cytokines/immunology , Dendritic Cells/immunology , Dendritic Cells/metabolism , Dendritic Cells/pathology , Fish Proteins/administration & dosage , Immunity, Cellular/drug effects , Macrophages/immunology , Macrophages/metabolism , Macrophages/pathology , Mice , Th1 Cells/immunology , Th1-Th2 Balance/drug effects
19.
Toxicon ; 58(6-7): 509-517, 2011.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP, SESSP-IBACERVO | ID: biblio-1068284

ABSTRACT

Combined proteomic and transcriptomic approaches to study the composition of the venom of Thalassophryne nattereri venomous fish revealed the primary structures of the major toxins as a family of proteases natterins, never described on venoms and a C-type lectin nattectin. To gain new insights into the mechanisms of venom pathogenesis and to further elucidate the role of its major toxins, the natterins and nattectin, we undertookin vitro investigations using these isolated toxins. Here we demonstrated the specific ability of the nattectin to bind types I and V collagen and natterins to bind and cleave type I collagen as well as type IV collagen, disrupting cell attachment and HeLa cells survival. Natterins have cytotoxic effect on both adherent cells or at in suspension, showing direct induction of necrosis that is followed by cell detachment. Nattectin improves integrinmediated HeLa cell adhesion and resistance to apoptosis by its binding to RGD dependent integrins, especially the b1 subunit. Based on our studies we now report that extracellular matrix (ECM) components as well as the integrin b1 subunit are targets for the natterins and nattectin. The ECM degradation or remodeling activities exerted by these toxins affect cell–cell and cell–ECM adhesion and survival and impair inflammatory cell migration into inflamed tissues.


Subject(s)
Animals , Mice , Fish Venoms/analysis , Fish Venoms/biosynthesis , Fish Venoms/isolation & purification , Fish Venoms/chemistry , Fish Venoms/toxicity , Apoptosis , Integrin beta Chains/analysis , Extracellular Matrix , Tissue Culture Techniques/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...