Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Biosensors (Basel) ; 13(10)2023 Sep 23.
Article in English | MEDLINE | ID: mdl-37887097

ABSTRACT

In recent years, innovative cell-based biosensing systems have been developed, showing impact in healthcare and life science research. Now, there is a need to design mass-production processes to enable their commercialization and reach society. However, current protocols for their fabrication employ materials that are not optimal for industrial production, and their preparation requires several chemical coating steps, resulting in cumbersome protocols. We have developed a simplified two-step method for generating controlled cell patterns on PMMA, a durable and transparent material frequently employed in the mass manufacturing of microfluidic devices. It involves air plasma and microcontact printing. This approach allows the formation of well-defined cell arrays on PMMA without the need for blocking agents to define the patterns. Patterns of various adherent cell types in dozens of individual cell cultures, allowing the regulation of cell-material and cell-cell interactions, were developed. These cell patterns were integrated into a microfluidic device, and their viability for more than 20 h under controlled flow conditions was demonstrated. This work demonstrated the potential to adapt polymeric cytophobic materials to simple fabrication protocols of cell-based microsystems, leveraging the possibilities for commercialization.


Subject(s)
Microfluidic Analytical Techniques , Polymethyl Methacrylate , Printing , Lab-On-A-Chip Devices
2.
Micromachines (Basel) ; 13(5)2022 May 06.
Article in English | MEDLINE | ID: mdl-35630206

ABSTRACT

The cancer xenograft model in which human cancer cells are implanted in a mouse is one of the most used preclinical models to test the efficacy of novel cancer drugs. However, the model is imperfect; animal models are ethically burdened, and the imperfect efficacy predictions contribute to high clinical attrition of novel drugs. If microfluidic cancer-on-chip models could recapitulate key elements of the xenograft model, then these models could substitute the xenograft model and subsequently surpass the xenograft model by reducing variation, increasing sensitivity and scale, and adding human factors. Here, we exposed HCT116 colorectal cancer spheroids to dynamic, in vivo-like, concentrations of oxaliplatin, including a 5 day drug-free period, on-chip. Growth inhibition on-chip was comparable to existing xenograft studies. Furthermore, immunohistochemistry showed a similar response in proliferation and apoptosis markers. While small volume changes in xenografts are hard to detect, in the chip-system, we could observe a temporary growth delay. Lastly, histopathology and a pharmacodynamic model showed that the cancer spheroid-on-chip was representative of the proliferating outer part of a HCT116 xenograft, thereby capturing the major driver of the drug response of the xenograft. Hence, the cancer-on-chip model recapitulated the response of HCT116 xenografts to oxaliplatin and provided additional drug efficacy information.

3.
EBioMedicine ; 66: 103303, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33773183

ABSTRACT

Organs-on-chips are in vitro models in which human tissues are cultured in microfluidic compartments with a controlled, dynamic micro-environment. Specific organs-on-chips are being developed to mimic human tumors, but the validation of such 'cancer-on-chip' models for use in drug development is hampered by the complexity and variability of human tumors. An important step towards validation of cancer-on-chip technology could be to first mimic cancer xenograft models, which share multiple characteristics with human cancers but are significantly less complex. Here we review the relevant biological characteristics of a xenograft tumor and show that organ-on-chip technology is capable of mimicking many of these aspects. Actual comparisons between on-chip tumor growth and xenografts are promising but also demonstrate that further development and empirical validation is still needed. Validation of cancer-on-chip models to xenografts would not only represent an important milestone towards acceptance of cancer-on-chip technology, but could also improve drug discovery, personalized cancer medicine, and reduce animal testing.


Subject(s)
Biomimetics , Disease Models, Animal , Lab-On-A-Chip Devices , Neoplasms/pathology , Animals , Biomimetics/methods , Cell Line, Tumor , Drug Discovery/methods , Heterografts , Humans , Mice , Microfluidic Analytical Techniques , Neoplasms/drug therapy , Xenograft Model Antitumor Assays
4.
Lab Chip ; 20(17): 3167-3178, 2020 08 26.
Article in English | MEDLINE | ID: mdl-32729598

ABSTRACT

We present a microfluidic device to expose cancer cells to a dynamic, in vivo-like concentration profile of a drug, and quantify efficacy on-chip. About 30% of cancer patients receive drug therapy. In conventional cell culture experiments drug efficacy is tested under static concentrations, e.g. 1 µM for 48 hours, whereas in vivo, drug concentration follows a pharmacokinetic profile with an initial peak and a decline over time. With the rise of microfluidic cell culture models, including organs-on-chips, there are opportunities to more realistically mimic in vivo-like concentrations. Our microfluidic device contains a cell culture chamber and a drug-dosing channel separated by a transparent membrane, to allow for shear stress-free drug exposure and label-free growth quantification. Dynamic drug concentration profiles in the cell culture chamber were controlled by continuously flowing controlled concentrations of drug in the dosing channel. The control over drug concentrations in the cell culture chambers was validated with fluorescence experiments and numerical simulations. Exposure of HCT116 colorectal cancer cells to static concentrations of the clinically used drug oxaliplatin resulted in a sensible dose-effect curve. Dynamic, in vivo-like drug exposure also led to statistically significant lower growth compared to untreated control. Continuous exposure to the average concentration of the in vivo-like exposure seems more effective than exposure to the peak concentration (Cmax) only. We expect that our microfluidic system will improve efficacy prediction of in vitro models, including organs-on-chips, and may lead to future clinical optimization of drug administration schedules.


Subject(s)
Antineoplastic Agents , Colorectal Neoplasms , Antineoplastic Agents/pharmacology , Cell Culture Techniques , Colorectal Neoplasms/drug therapy , Humans , Lab-On-A-Chip Devices , Microfluidics
5.
Biomed Microdevices ; 10(5): 727-37, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18523888

ABSTRACT

Breast cancer is the leading cause of cancer deaths among non-smoking women worldwide. At the moment the treatment regime is such that patients receive different chemotherapeutic and/or hormonal treatments dependent on the hormone receptor status, the menopausal status and age. However, in vitro sensitivity testing of tumor biopsies could rationalize and improve the choice of chemo- and hormone therapy. Lab-on-a-Chip devices, using microfluidic techniques, make detailed cellular analysis possible using fewer cells, enabling working with a patients' own cells and performing chemo- and hormone sensitivity testing in an ex vivo setting. This article describes the development of two microfluidic devices made in poly(dimethylsiloxane) (PDMS) to validate the cell culture properties and analyze the chemosensitivity of MCF-7 cells (estrogen receptor positive human breast cancer cells) in response to the drug staurosporine (SSP). In both cases, cell viability was assessed using the life-stain Calcein-AM (CAAM) and the death dye propidium iodide (PI). MCF-7 cells could be statically cultured for up to 7 days in the microfluidic chip. A 30 min flow with SSP and a subsequent 24 h static incubation in the incubator induced apoptosis in MCF-7 cells, as shown by a disappearance of the aggregate-like morphology, a decrease in CAAM staining and an increase in PI staining. This work provides valuable leads to develop a microfluidic chip to test the chemosensitivity of tumor cells in response to therapeutics and in this way improve cancer treatment towards personalized medicine.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Biological Assay/instrumentation , Breast Neoplasms/drug therapy , Microfluidic Analytical Techniques/instrumentation , Biological Assay/methods , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Survival/drug effects , Dimethylpolysiloxanes/chemistry , Drug Evaluation, Preclinical , Female , Fluoresceins/metabolism , Fluorescent Dyes/metabolism , Humans , Polymers/chemistry , Reproducibility of Results , Sensitivity and Specificity , Staurosporine/pharmacology , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...