Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Robot AI ; 10: 1109131, 2023.
Article in English | MEDLINE | ID: mdl-36909364

ABSTRACT

This paper explores a mixed assembly architecture trade study for a Built On-orbit Robotically assembled Gigatruss (BORG). Robotic in-space assembly (ISA) and servicing is a crucial field to expand endeavors in space. Currently, large structures in space are commonly only deployable and must be efficiently folded and packed into a launch vehicle (LV) and then deployed perfectly for operational status to be achieved. To actualize being able to build increasingly large structures in space, this scheme becomes less feasible, being constrained by LV volume and mass requirements. ISA allows the use of multiple launches to create even larger structures. The common ISA proposals consist of either strut-by-strut or multiple deployable module construction methodologies. In this paper, a mixed assembly scheme is explored and a trade study is conducted on its possible advantages with respect to many phases of a mission: 1) manufacturing, 2) stowage and transport, 3) ISA, and 4) servicing. Finally, a weighted decision matrix was created to help compare the various advantages and disadvantages of different architectural schemes.

2.
Front Robot AI ; 9: 709905, 2022.
Article in English | MEDLINE | ID: mdl-35280960

ABSTRACT

The development of autonomous robotic systems is a key component in the expansion of space exploration and the development of infrastructures for in-space applications. An important capability for these robotic systems is the ability to maintain and repair structures in the absence of human input by autonomously generating valid task sequences and task to robot allocations. To this end, a novel stochastic problem formulation paired with a mixed integer programming assembly schedule generator has been developed to articulate the elements, constraints, and state of an assembly project and solve for an optimal assembly schedule. The developed formulations were tested with a set of hardware experiments that included generating an optimal schedule for an assembly and rescheduling during an assembly to plan a repair. This formulation and validation work provides a path forward for future research in the development of an autonomous system capable of building and maintaining in-space infrastructures.

SELECTION OF CITATIONS
SEARCH DETAIL
...