Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
J Obes Metab Syndr ; 2024 May 13.
Article in English | MEDLINE | ID: mdl-38735655

ABSTRACT

Background: Muscle-liver crosstalk plays an important role in the development and progression of non-alcoholic fatty liver disease (NAFLD). The measurement of muscle echo-intensity during ultrasonography is a real-time, non-invasive method of assessing muscle quality. In this retrospective study, we investigated the significance of poor muscle quality (namely, a greater mass of non-contractile tissue, including intramuscular fat) as a risk factor for advanced liver fibrosis and considered whether it may represent a useful tool for the diagnosis of advanced liver fibrosis. Methods: We analyzed data from 307 patients with NAFLD (143 men and 164 women) who visited the University of Tsukuba Hospital between 2017 and 2022. The patients were stratified into the following tertiles of muscle quality according to their muscle echo-intensity on ultrasonography: modest (84.1 A.U.), intermediate (97.4 A.U.), and poor (113.6 A.U.). We then investigated the relationships between muscle quality and risk factors for advanced liver fibrosis and calculated appropriate cutoff values. Results: Patients with poor muscle quality showed a significant, 7.6-fold greater risk of liver fibrosis compared to those with modest muscle quality. Receiver operating characteristic curve analysis showed that muscle quality assessment was as accurate as the Fibrosis-4 index and NAFLD fibrosis score in screening for liver fibrosis and superior to the assessment of muscle quantity and strength, respectively. Importantly, a muscle echo-intensity of ≥92.4 A.U. may represent a useful marker of advanced liver fibrosis. Conclusion: Muscle quality may represent a useful means of identifying advanced liver fibrosis, and its assessment may become a useful screening tool in daily practice.

2.
PLoS One ; 18(10): e0291880, 2023.
Article in English | MEDLINE | ID: mdl-37862331

ABSTRACT

Lipopolysaccharide (LPS) derived from Porphyromonas gingivalis (P.g.), which causes periodontal disease, contributes to the development of non-alcoholic steatohepatitis (NASH). We investigated the role of Nrf2, an antioxidative stress sensor, in macrophages in the development of NASH induced by LPS from P.g. We generated macrophage-specific Nrf2 gene rescue mice (Nrf2-mRes), which express Nrf2 only in macrophages, using the cre/loxp system. Wild-type (WT) mice, whole body Nrf2-knockout (Nrf2-KO) mice, and Nrf2-mRes mice were fed a high-fat diet for 18 weeks, and LPS from P.g. was administered intraperitoneally for the last 6 weeks. Nrf2-KO mice developed severe steatohepatitis with liver inflammation and fibrosis compared with WT mice, and steatohepatitis was ameliorated in Nrf2-mRes mice. The mRNA expressions of Toll-like receptor (Tlr)-2, which activates inflammatory signaling pathways after LPS binding, and α-smooth muscle actin (αSma), which promotes hepatic fibrosis, were reduced in Nrf2-mRes mice compared with Nrf2-KO mice. The protein levels of LPS-binding protein in livers were increased in Nrf2-KO mice compared with WT mice; however, the levels were reduced in Nrf2-mRes mice despite similar numbers of F4/80 positive cells, which reflect macrophage/Kupffer cell infiltration into the livers. Nrf2 in macrophages ameliorates NASH through the increased hepatic clearance of LPS.


Subject(s)
Non-alcoholic Fatty Liver Disease , Animals , Mice , Diet, High-Fat , Lipopolysaccharides/metabolism , Liver/metabolism , Macrophages/metabolism , Mice, Inbred C57BL , Mice, Knockout , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Porphyromonas gingivalis
3.
Physiol Rep ; 11(2): e15413, 2023 01.
Article in English | MEDLINE | ID: mdl-36708512

ABSTRACT

Recently, the use of ergogenic aids in sports by both athletes and fans has increased. Moreover, the overall demand for new ergogenic aids has increased. Hesperidin is a polyphenol that is useful for improving exercise performance by activating energy generation through ß-oxidation and oxidative phosphorylation in skeletal muscles. However, it is difficult to use this compound as an ergogenic aid because of its poor water solubility and low bioavailability. Glucosyl hesperidin is formed when one molecule of glucose is transferred to hesperidin via glycosyl-transferase. It is 10,000× more soluble and has 3.7× higher bioavailability than hesperidin. In this study, we assessed whether continuous (14 days) intake of glucosyl hesperidin improves the aerobic exercise capacity of rats during long-term acute exercise. Although glucosyl hesperidin intake did not improve the performance of high-intensity running (30 m/min), we did observe improvement in low-intensity running (15 m/min) (p < 0.05). We demonstrate that in sedentary rats, glucosyl hesperidin intake increased ß-oxidation and oxidative phosphorylation in the skeletal muscle (p < 0.05 and p < 0.01, respectively). Glucosyl hesperidin intake may have created a metabolic state useful for long-term exercise. In conclusion, the continuous intake of glucosyl hesperidin improved the aerobic exercise capacity of rats during long-term acute exercise.


Subject(s)
Hesperidin , Running , Rats , Animals , Hesperidin/pharmacology , Glucosides , Oxidative Phosphorylation
4.
Amino Acids ; 54(2): 251-260, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35122528

ABSTRACT

Taurine enhances physical performance; however, the underlying mechanism remains unclear. This study examined the effect of taurine on the overtime dynamics of blood glucose concentration (BGC) during endurance exercise in rats. Male F344 rats were subjected to transient treadmill exercise until exhaustion following 3 weeks of taurine supplementation or non-supplementation (TAU and CON groups). Every 10 min during exercise, BGC was measured in blood collected through cannulation of the jugular vein. Gluconeogenesis-, lipolysis-, and fatty acid oxidation-related factors in the plasma, liver, and skeletal muscles were also analyzed after 120-min run. Exercise time to exhaustion was significantly longer with taurine supplementation. BGC in the two groups significantly increased by 40 min and gradually and significantly decreased toward the respective exhaustion point. The decline in BGC from the peak at 40 min was significantly slower in the TAU group. The time when the once-increased BGC regressed to the 0-time level was significantly and positively correlated with exercise time until exhaustion. At the 120-min point, where the difference in BGC between the two groups was most significant, plasma free fatty acid concentration and acetyl-carnitine and N-acetyltaurine concentrations in skeletal muscle were significantly higher in the TAU group, whereas glycogen and glucogenic amino acid concentrations and G6Pase activity in the liver were not different between the two groups. Taurine supplementation enhances endurance capacity by delaying the decrease in BGC toward exhaustion through increases of lipolysis in adipose tissues and fatty acid oxidation in skeletal muscles during endurance exercise.


Subject(s)
Blood Glucose , Physical Endurance , Animals , Blood Glucose/metabolism , Dietary Supplements , Male , Muscle, Skeletal/metabolism , Rats , Rats, Inbred F344 , Taurine/metabolism , Taurine/pharmacology
5.
Physiol Rep ; 9(24): e15130, 2021 12.
Article in English | MEDLINE | ID: mdl-34927380

ABSTRACT

OBJECTIVE: Excessive exercise increases the production of reactive oxygen species in skeletal muscles. Sulforaphane activates nuclear factor erythroid 2-related factor 2 (Nrf2) and induces a protective effect against oxidative stress. In a recent report, sulforaphane intake suppressed exercise-induced oxidative stress and muscle damage in mice. However, the effect of sulforaphane intake on delayed onset muscle soreness after eccentric exercise in humans is unknown. We evaluated the effect of sulforaphane supplement intake in humans regarding the delayed onset muscle soreness (DOMS) after eccentric exercise. RESEARCH METHODS & PROCEDURES: To determine the duration of sulforaphane supplementation, continuous blood sampling was performed and NQO1 mRNA expression levels were analyzed. Sixteen young men were randomly divided into sulforaphane and control groups. The sulforaphane group received sulforaphane supplements. Each group performed six set of five eccentric exercise with the nondominant arm in elbow flexion with 70% maximum voluntary contraction. We assessed muscle soreness in the biceps using the visual analog scale, range of motion (ROM), muscle damage markers, and oxidative stress marker (malondialdehyde; MDA). RESULTS: Sulforaphane supplement intake for 2 weeks increased NQO1 mRNA expression in peripheral blood mononuclear cells (PBMCs). Muscle soreness on palpation and ROM were significantly lower 2 days after exercise in the sulforaphane group compared with the control group. Serum MDA showed significantly lower levels 2 days after exercise in the sulforaphane group compared with the control group. CONCLUSION: Our findings suggest that sulforaphane intake from 2 weeks before to 4 days after the exercise increased NQO1, a target gene of Nrf2, and suppressed DOMS after 2 days of eccentric exercise.


Subject(s)
Dietary Supplements , Exercise/adverse effects , Isothiocyanates/administration & dosage , Myalgia/drug therapy , NAD(P)H Dehydrogenase (Quinone)/blood , Oxidative Stress/drug effects , Sulfoxides/administration & dosage , Exercise/physiology , Humans , Male , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Myalgia/blood , Myalgia/diagnosis , Oxidative Stress/physiology , Pain Measurement/drug effects , Pain Measurement/methods , Pilot Projects , Random Allocation , Young Adult
6.
Metabolites ; 11(8)2021 Aug 06.
Article in English | MEDLINE | ID: mdl-34436463

ABSTRACT

During endurance exercises, a large amount of mitochondrial acetyl-CoA is produced in skeletal muscles from lipids, and the excess acetyl-CoA suppresses the metabolic flux from glycolysis to the TCA cycle. This study evaluated the hypothesis that taurine and carnitine act as a buffer of the acetyl moiety of mitochondrial acetyl-CoA derived from the short- and long-chain fatty acids of skeletal muscles during endurance exercises. In human subjects, the serum concentrations of acetylated forms of taurine (NAT) and carnitine (ACT), which are the metabolites of acetyl-CoA buffering, significantly increased after a full marathon. In the culture medium of primary human skeletal muscle cells, NAT and ACT concentrations significantly increased when they were cultured with taurine and acetate or with carnitine and palmitic acid, respectively. The increase in the mitochondrial acetyl-CoA/free CoA ratio induced by acetate and palmitic acid was suppressed by taurine and carnitine, respectively. Elevations of NAT and ACT in the blood of humans during endurance exercises might serve the buffering of the acetyl-moiety in mitochondria by taurine and carnitine, respectively. The results suggest that blood levels of NAT and ACT indicate energy production status from fatty acids in the skeletal muscles of humans undergoing endurance exercise.

7.
Physiol Rep ; 9(9): e14859, 2021 05.
Article in English | MEDLINE | ID: mdl-33991461

ABSTRACT

Exercise ameliorates nonalcoholic fatty liver disease (NAFLD) by inducing phenotypic changes in Kupffer cells (KCs). p62/Sqstm1-knockout (p62-KO) mice develop NAFLD alongside hyperphagia-induced obesity. We evaluated (1) the effects of long-term exercise on the foreign-body phagocytic capacity of KCs, their surface marker expression, and the production of steroid hormones in p62-KO mice; and (2) whether long-term exercise prevented the development of non-alcoholic steatohepatitis (NASH) in p62-KO mice fed a high-fat diet (HFD). In experiment 1, 30-week-old male p62-KO mice were allocated to resting (p62-KO-Rest) or exercise (p62-KO-Ex) groups, and the latter performed long-term exercise over 4 weeks. Then, the phenotype of their KCs was compared to that of p62-KO-Rest and wild-type (WT) mice. In experiment 2, 5-week-old male p62-KO mice that were fed a HFD performed long-term exercise over 12 weeks. In experiment 1, the phagocytic capacity of KCs and the proportion of CD68-positive cells were lower in the p62-KO-Rest group than in the WT group, but they increased with long-term exercise. The percentage of CD11b-positive KCs was higher in the p62-KO-Rest group than in the WT group, but lower in the p62-KO-Ex group. The circulating dehydroepiandrosterone (DHEA) concentration was higher in p62-KO-Ex mice than in p62-KO-Rest mice. In experiment 2, the body mass and composition of the p62-KO-Rest and p62-KO-Ex groups were similar, but the hepatomegaly, hepatic inflammation, and fibrosis were less marked in p62-KO-Ex mice. The DHEA concentration was higher in p62-KO-Ex mice than in WT or p62-KO-Rest mice. Thus, long-term exercise restores the impaired phagocytic capacity of KCs in NAFLD obese mice, potentially through greater DHEA production, and prevents the development of NASH by ameliorating hepatic inflammation and fibrogenesis. These results suggest a molecular mechanism for the beneficial effect of exercise in the management of patients with NAFLD.


Subject(s)
Hyperphagia/complications , Kupffer Cells/metabolism , Non-alcoholic Fatty Liver Disease/prevention & control , Obesity/complications , Physical Conditioning, Animal/methods , Animals , Antigens, CD/metabolism , Antigens, Differentiation, Myelomonocytic/metabolism , Cells, Cultured , Dehydroepiandrosterone/metabolism , Hyperphagia/genetics , Male , Mice , Mice, Inbred C57BL , Motor Activity , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/genetics , Obesity/genetics , Phenotype , Sequestosome-1 Protein/genetics
8.
Adv Healthc Mater ; 10(10): e2100067, 2021 05.
Article in English | MEDLINE | ID: mdl-33660940

ABSTRACT

Although the adverse effects of excessively generated reactive oxygen species (ROS) on the body during aerobic exercise have been debated, there are few reports on the remarkable effects of the application of conventional antioxidants on exercise performance. The conventional antioxidants could not enhance exercise performance due to their rapid excretion from the body and serious adverse effects on the cellular respiratory system. In this study, impact of the original antioxidant self-assembling nanoparticle, redox-active nanoparticle (RNP), is investigated on the exercise performance of rats during running experiments. With an increase in the dose of the administered RNP, the all-out time of the rat running extends in a dose-dependent manner. In contrast, with an increase in the dose of the low-molecular-weight (LMW) antioxidant, the all-out running time of the rats decreases. The control group and LMW antioxidant treated group decrease in the number of red blood cells (RBCs) and increase oxidative stress after running. However, the RNP group maintains a similar RBC level and oxidative stress as that of the sedentary group. The results suggest that RNP, which shows long-blood circulation without disturbance of mitohormesis, effectively removes ROS from the bloodstream to suppresses RBC oxidative stress and damage, thus improving exercise performance.


Subject(s)
Nanoparticles , Running , Animals , Antioxidants/pharmacology , Oxidation-Reduction , Oxidative Stress , Rats , Reactive Oxygen Species
9.
Adv Exp Med Biol ; 1155: 113-118, 2019.
Article in English | MEDLINE | ID: mdl-31468390

ABSTRACT

We previously showed that taurine administration contributed to the extension of time to exhaustion through exercise-induced hypoglycemia restraint, and we suggested that the activation of hepatic gluconeogenesis was initiated before the exercise with the taurine administration. We hypothesize that the extension effect of exercise duration with the taurine administration is restrained in the rats which inhibited hepatic gluconeogenesis. In this study, we aimed to produce a rat model that inhibited hepatic gluconeogenesis as a first step in testing our hypothesis.F344 male rats of 8 weeks after birth were purchased. The blood samples were collected via jugular vein catheter to perform the pyruvate tolerance test (PTT) with the intraperitoneal administration, and to determine the optimal time point of blood glucose measurement. 3-mercaptopicolinic acids (3MPA) was used as an inhibitor of PEPCK. The rats were divided into three groups, Non-dosage control (CON) group, 30 mg/kg・BW 3MPA (3MPA 30) group, and 300 mg/kg・BW 3MPA (3MPA 300) group.The blood glucose level showed a significant peak 15 min after pyruvate administration. The change of the blood glucose level after the PTT in 3MPA 300 group was significantly smaller than that of the CON group at this time point. These results show we could prepare the rat model that inhibited hepatic gluconeogenesis.


Subject(s)
Disease Models, Animal , Gluconeogenesis , Intracellular Signaling Peptides and Proteins/metabolism , Liver/physiopathology , Phosphoenolpyruvate Carboxykinase (GTP)/metabolism , Animals , Blood Glucose , Male , Physical Conditioning, Animal , Rats , Rats, Inbred F344 , Taurine
10.
J Sports Med Phys Fitness ; 58(11): 1582-1591, 2018 Nov.
Article in English | MEDLINE | ID: mdl-28944645

ABSTRACT

BACKGROUND: The aim of the present study was to compare the effects of branched-chain amino acid (BCAA) supplementation taken before or after exercise on delayed onset muscle soreness (DOMS) and exercise-induced muscle damage (EIMD). METHODS: Fifteen young men (aged 21.5±0.4 years) were given either BCAA (9.6 g·day-1) or placebo before and after exercise (and for 3 days prior to and following the exercise day) in three independent groups: the control group (placebo before and after exercise), the PRE group (BCAA before exercise and placebo after exercise), and the POST group (placebo before exercise and BCAA after exercise). Participants performed 30 repetitions of eccentric exercise with the non-dominant arm. DOMS, upper arm circumference (CIR), elbow range of motion (ROM), serum creatine kinase (CK), lactate dehydrogenase (LDH), and aldolase, BCAA, and ß-hydroxy-ß-methylbutyrate (3HMB) were measured immediately before and after the exercise and on the following 4 days. RESULTS: Serum BCAA and 3HMB concentrations increased significantly in the PRE group immediately after the exercise, recovering to baseline over the following days. In the days following the exercise day, DOMS, CIR, and ROM were significantly improved in the PRE group compared to the control group, with weaker effects in the POST group. Serum activities of CK, LDH, and aldolase in the days following the exercise day were significantly suppressed in the PRE group compared to control group. CONCLUSIONS: The present study confirmed that repeated BCAA supplementation before exercise had a more beneficial effect in attenuating DOMS and EIMD induced by eccentric exercise than repeated supplementation after exercise.


Subject(s)
Amino Acids, Branched-Chain/administration & dosage , Dietary Supplements , Exercise , Muscle, Skeletal/drug effects , Myalgia/drug therapy , Amino Acids, Branched-Chain/therapeutic use , Arm , Creatine Kinase/blood , Double-Blind Method , Drug Administration Schedule , Elbow Joint , Fructose-Bisphosphate Aldolase/blood , Humans , L-Lactate Dehydrogenase/blood , Male , Muscle, Skeletal/pathology , Pilot Projects , Range of Motion, Articular , Thymopentin , Valerates/blood , Young Adult
11.
Sci Rep ; 7(1): 12902, 2017 10 10.
Article in English | MEDLINE | ID: mdl-29018242

ABSTRACT

Sulforaphane (SFN) plays an important role in preventing oxidative stress by activating the nuclear factor (erythroid derived 2)-like 2 (Nrf2) signalling pathway. SFN may improve exercise endurance capacity by counteracting oxidative stress-induced damage during exercise. We assessed running ability based on an exhaustive treadmill test (progressive-continuous all-out) and examined the expression of markers for oxidative stress and muscle damage. Twelve- to 13-week-old Male wild-type mice (Nrf2 +/+) and Nrf2-null mice (Nrf2 -/-) on C57BL/6J background were intraperitoneally injected with SFN or vehicle prior to the test. The running distance of SFN-injected Nrf2 +/+ mice was significantly greater compared with that of uninjected mice. Enhanced running capacity was accompanied by upregulation of Nrf2 signalling and downstream genes. Marker of oxidative stress in SFN-injected Nrf2 +/+ mice were lower than those in uninjected mice following the test. SFN produced greater protection against muscle damage during exhaustive exercise conditions in Nrf2 +/+ mice than in Nrf2 -/- mice. SFN-induced Nrf2 upregulation, and its antioxidative effects, might play critical roles in attenuating muscle fatigue via reduction of oxidative stress caused by exhaustive exercise. This in turn leads to enhanced exercise endurance capacity. These results provide new insights into SFN-induced upregulation of Nrf2 and its role in improving exercise performance.


Subject(s)
Muscle, Skeletal/physiology , NF-E2-Related Factor 2/metabolism , Physical Endurance , Adenosine Triphosphatases/metabolism , Animals , Energy Metabolism/drug effects , Glutathione/metabolism , Isothiocyanates/pharmacology , Luciferases/metabolism , Luminescence , Male , Mice, Inbred C57BL , Mitochondria/drug effects , Mitochondria/metabolism , Muscle, Skeletal/drug effects , Organelle Biogenesis , Oxidation-Reduction , Oxidative Stress/drug effects , Physical Conditioning, Animal , Sulfoxides , Thiobarbituric Acid Reactive Substances/metabolism
12.
Sci Rep ; 7(1): 11977, 2017 09 20.
Article in English | MEDLINE | ID: mdl-28931917

ABSTRACT

The failure of Kupffer cells (KCs) to remove endotoxin is an important factor in the pathogenesis of non-alcoholic fatty liver disease (NAFLD). In this study, the effects of exercise training on KC function were studied in terms of in vivo endotoxin clearance and inflammatory responses. Mice were allocated into rest and exercise groups. KC bead phagocytic capacity and plasma steroid hormone levels were determined following exercise training. Endotoxin and inflammatory cytokine levels in plasma were determined over time following endotoxin injection. KC bead phagocytic capacity was potentiated and clearance of exogenously-injected endotoxin was increased in the exercise group. Inflammatory cytokine (TNF-α and IL-6) levels were lower in the exercise group. We found that only DHEA was increased in the plasma of the exercise group. In an in vitro experiment, the addition of DHEA to RAW264.7 cells increased bead phagocytic capacity and attenuated endotoxin-induced inflammatory responses. These results suggest that exercise training modulates in vivo endotoxin clearance and inflammatory responses in association with increased DHEA production. These exercise-induced changes in KC capacity may contribute to a slowing of disease progression in NAFLD patients.


Subject(s)
Endotoxins/metabolism , Inflammation/pathology , Kupffer Cells/metabolism , Metabolic Clearance Rate , Phagocytosis , Physical Conditioning, Animal , Animals , Cytokines/blood , Mice, Inbred C57BL , Plasma/chemistry
13.
PLoS One ; 10(12): e0144835, 2015.
Article in English | MEDLINE | ID: mdl-26658309

ABSTRACT

Regular physical exercise is central to a healthy lifestyle. However, exercise-related muscle contraction can induce reactive oxygen species and reactive nitrogen species (ROS/RNS) production in skeletal muscle. The nuclear factor-E2-related factor-2 (Nrf2) transcription factor is a cellular sensor for oxidative stress. Regulation of nuclear Nrf2 signaling regulates antioxidant responses and protects organ structure and function. However, the role of Nrf2 in exercise- or contraction-induced ROS/RNS production in skeletal muscle is not clear. In this study, using differentiated C2C12 cells and electrical pulse stimulation (EPS) of muscle contraction, we explored whether Nrf2 plays a role in the skeletal muscle response to muscle contraction-induced ROS/RNS. We found that EPS (40 V, 1 Hz, 2 ms) stimulated ROS/RNS accumulation and Nrf2 activation. We also showed that expression of NQO1, HO-1 and GCLM increased after EPS-induced muscle contraction and was remarkably suppressed in cells with Nrf2 knockdown. We also found that the antioxidant N-acetylcysteine (NAC) significantly attenuated Nrf2 activation after EPS, whereas the nitric oxide synthetase inhibitor Nω-nitro-L-arginine methyl ester (L-NAME) did not. Furthermore, Nrf2 knockdown after EPS markedly decreased ROS/RNS redox potential and cell viability and increased expression of the apoptosis marker Annexin V in C2C12 myotubes. These results indicate that Nrf2 activation and expression of Nrf2 regulated-genes protected muscle against the increased ROS caused by EPS-induced muscle contraction. Thus, our findings suggest that Nrf2 may be a key factor for preservation of muscle function during muscle contraction.


Subject(s)
Muscle, Skeletal/metabolism , NF-E2-Related Factor 2/metabolism , Animals , Antioxidants/metabolism , Apoptosis/physiology , Cell Line , Cell Survival/physiology , Cytoprotection , Electric Stimulation , Mice , Muscle Fibers, Skeletal/metabolism , Muscle, Skeletal/cytology , Oxidative Stress/physiology , Reactive Nitrogen Species/metabolism , Reactive Oxygen Species/metabolism , Signal Transduction
15.
J Int Soc Sports Nutr ; 10(1): 51, 2013 Nov 06.
Article in English | MEDLINE | ID: mdl-24195702

ABSTRACT

BACKGROUND: Previous studies have evaluated the effectiveness of branched-chain amino acid (BCAA) supplementation for preventing delayed onset muscle soreness (DOMS) and muscle damage induced by eccentric exercise, their findings have been inconclusive. Since taurine has anti-inflammatory and anti-oxidative effects, the present study investigated the combined effect of BCAA and taurine on DOMS and muscle damage. METHODS: Thirty-six untrained male subjects (22.5 ± 3.8 years) were assigned to four groups (placebo + placebo [placebo], BCAA + placebo, placebo + taurine, and BCAA + taurine [combined]) and given a combination of 3.2 g BCAA (or placebo) and 2.0 g taurine (or placebo), three times a day, for two weeks prior to and three days after eccentric elbow flexor exercises. DOMS and muscle damage in the biceps brachii were subjectively and objectively evaluated using the visual analogue scale (VAS), upper arm circumference (CIR), and blood parameters (creatine kinase, lactate dehydrogenase [LDH], aldolase, and 8-hydroxydeoxyguanosine [8-OHdG]). RESULTS: In the combined group, VAS and 8-OHdG two days after exercise, CIR two and three days after exercise and LDH from one to three days after exercise were significantly lower than the placebo group. The area under the curve from before exercise to four days later for CIR, LDH, and aldolase was also significantly lower in the combined group than in the placebo group. CONCLUSION: A combination of 3.2 g BCAA and 2.0 g taurine, three times a day, for two weeks prior to and three days after exercise may be a useful nutritional strategy for attenuating exercise-induced DOMS and muscle damage.

SELECTION OF CITATIONS
SEARCH DETAIL
...