Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
Phys Rev E ; 100(1-1): 012109, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31499932

ABSTRACT

We suggest alternative quantum Otto engines, using heat bath algorithmic cooling with a partner pairing algorithm instead of isochoric cooling and using quantum swap operations instead of quantum adiabatic processes. Liquid state nuclear magnetic resonance systems in a single entropy sink are treated as working fluids. The extractable work and thermal efficiency are analyzed in detail for four-stroke and two-stroke types of alternative quantum Otto engines. The role of the heat bath algorithmic cooling in these cycles is to use a single entropy sink instead of two so that a single incoherent energy resource can be harvested and processed using an algorithmic quantum heat engine. Our results indicate a path to programmable quantum heat engines as analogs of quantum computers beyond traditional heat engine cycles. We find that for our NMR system example implementation of quantum algorithmic heat engine stages yields more power due to increased cycle speeds.

3.
Phys Rev E Stat Nonlin Soft Matter Phys ; 83(5 Pt 2): 056118, 2011 May.
Article in English | MEDLINE | ID: mdl-21728616

ABSTRACT

Radical-ion-pair reactions were recently shown to represent a rich biophysical laboratory for the application of quantum measurement theory methods and concepts. Here we show that radical-ion-pair reactions essentially form a nonlinear biochemical double-slit interferometer. Quantum coherence effects are visible when "which-path" information is limited, and the incoherent limit is approached when measurement-induced decoherence sets in. Based on this analogy with the optical double-slit experiment we derive and elaborate on the fundamental master equation of spin-selective radical-ion-pair reactions that covers the continuous range from complete incoherence to maximum singlet-triplet coherence.


Subject(s)
Biochemistry , Models, Theoretical , Optical Phenomena , Interferometry , Quantum Theory
SELECTION OF CITATIONS
SEARCH DETAIL
...