Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 20(2)2020 Jan 08.
Article in English | MEDLINE | ID: mdl-31936408

ABSTRACT

This paper discusses the development, processing steps, and evaluation of a smart build-plate or baseplate tool for metal additive manufacturing technologies. This tool uses an embedded high-definition fiber optic sensing fiber to measure strain states from temperature and residual stress within the build-plate for monitoring purposes. Monitoring entails quality tracking for consistency along with identifying defect formation and growth, i.e., delamination or crack events near the build-plate surface. An aluminum alloy 6061 build-plate was manufactured using ultrasonic additive manufacturing due to the process' low formation temperature and capability of embedding fiber optic sensing fiber without damage. Laser-powder bed fusion (L-PBF) was then used to print problematic geometries onto the build-plate using AlSi10Mg for evaluation purposes. The tool identified heat generation, delamination onset, and delamination growth of the printed L-PBF parts.

2.
Opt Lett ; 31(4): 438-40, 2006 Feb 15.
Article in English | MEDLINE | ID: mdl-16496879

ABSTRACT

A novel technique, named "core suction," for fabricating optical fiber preforms has been devised. The technique involves drawing the molten nonconventional core glass material into the cladding tube to form the preform. The developed technique is simple, inexpensive, and shows great potential for fabricating preforms of highly nonlinear nonconventional glasses as the core material. Preforms were made with Schott SF6 and a lead-tellurium-germanate glass in silica cladding tubes, and these preforms were then pulled into fibers.

SELECTION OF CITATIONS
SEARCH DETAIL
...