Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Viruses ; 15(8)2023 08 21.
Article in English | MEDLINE | ID: mdl-37632122

ABSTRACT

The COVID-19 pandemic had a profound impact on influenza activity worldwide. However, as the pandemic progressed, influenza activity resumed. Here, we describe the influenza epidemic of high intensity of the 2022-2023 season. The epidemic had an early start and peaked in week 51.2022. The extremely high intensity of the epidemic may have been due to a significant decrease in herd immunity. The results of PCR-testing of 220,067 clinical samples revealed that the influenza A(H1N1)pdm09 virus dominated, causing 56.4% of positive cases, while A(H3N2) influenza subtype accounted for only 0.6%, and influenza B of Victoria lineage-for 34.3%. The influenza vaccine was found to be highly effective, with an estimated effectiveness of 92.7% in preventing admission with laboratory-confirmed influenza severe acute respiratory illness (SARI) cases and 54.7% in preventing influenza-like illness/acute respiratory illness (ILI/ARI) cases due to antigenic matching of circulated viruses with influenza vaccine strains for the season. Full genome next-generation sequencing of 1723 influenza A(H1N1)pdm09 viruses showed that all of them fell within clade 6B.1A.5.a2; nine of them possessed H275Y substitution in the NA gene, a genetic marker of oseltamivir resistance. Influenza A(H3N2) viruses belonged to subclade 3C.2a1b.2a.2 with the genetic group 2b being dominant. All 433 influenza B viruses belonged to subclade V1A.3a.2 encoding HA1 substitutions A127T, P144L, and K203R, which could be further divided into two subgroups. None of the influenza A(H3N2) and B viruses sequenced had markers of resistance to NA inhibitors. Thus, despite the continuing circulation of Omicron descendant lineages, influenza activity has resumed in full force, raising concerns about the intensity of fore coming seasonal epidemics.


Subject(s)
COVID-19 , Influenza A Virus, H1N1 Subtype , Influenza Vaccines , Influenza, Human , Humans , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Influenza A Virus, H1N1 Subtype/genetics , Seasons , Vaccine Efficacy , Influenza A Virus, H3N2 Subtype/genetics , Pandemics , Russia/epidemiology
2.
Viruses ; 15(7)2023 06 22.
Article in English | MEDLINE | ID: mdl-37515103

ABSTRACT

The Omicron variant of SARS-CoV-2 rapidly spread worldwide in late 2021-early 2022, displacing the previously prevalent Delta variant. Before 16 December 2021, community transmission had already been observed in tens of countries globally. However, in Russia, the majority of reported cases at that time had been sporadic and associated with travel. Here, we report an Omicron outbreak at a student dormitory in Saint Petersburg between 16-29 December 2021, which was the earliest known instance of a large-scale community transmission in Russia. Out of the 465 sampled residents of the dormitory, 180 (38.7%) tested PCR-positive. Among the 118 residents for whom the variant had been tested by whole-genome sequencing, 111 (94.1%) were found to carry the Omicron variant. Among these 111 residents, 60 (54.1%) were vaccinated or had reported a previous infection of COVID-19. Phylogenetic analysis confirmed that the outbreak was caused by a single introduction of the BA.1.1 sub-lineage of the Omicron variant. The dormitory-derived clade constituted a significant proportion of BA.1.1 samples in Saint Petersburg and has spread to other regions of Russia and even to other countries. The rapid spread of the Omicron variant in a population with preexisting immunity to previous variants underlines its propensity for immune evasion.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/epidemiology , Phylogeny , Disease Outbreaks , Russia/epidemiology
3.
Nat Commun ; 14(1): 149, 2023 01 10.
Article in English | MEDLINE | ID: mdl-36627290

ABSTRACT

Evolution of SARS-CoV-2 in immunocompromised hosts may result in novel variants with changed properties. While escape from humoral immunity certainly contributes to intra-host evolution, escape from cellular immunity is poorly understood. Here, we report a case of long-term COVID-19 in an immunocompromised patient with non-Hodgkin's lymphoma who received treatment with rituximab and lacked neutralizing antibodies. Over the 318 days of the disease, the SARS-CoV-2 genome gained a total of 40 changes, 34 of which were present by the end of the study period. Among the acquired mutations, 12 reduced or prevented the binding of known immunogenic SARS-CoV-2 HLA class I antigens. By experimentally assessing the effect of a subset of the escape mutations, we show that they resulted in a loss of as much as ~1% of effector CD8 T cell response. Our results indicate that CD8 T cell escape represents a major underappreciated contributor to SARS-CoV-2 evolution in humans.


Subject(s)
COVID-19 , T-Lymphocytes, Cytotoxic , Humans , SARS-CoV-2 , CD8-Positive T-Lymphocytes , Antibodies, Neutralizing , Antibodies, Viral , Spike Glycoprotein, Coronavirus
4.
Front Microbiol ; 12: 662028, 2021.
Article in English | MEDLINE | ID: mdl-33936018

ABSTRACT

Pigs have long been recognized as "mixing vessels" in which new viruses are formed by reassortment involving various influenza virus lineages (avian, animal, human). However, surveillance of swine influenza viruses only gained real significance after the 2009 pandemic. A fundamentally important point is the fact that there is still no regular surveillance of swine flu in Russia, and the role of swine viruses is underestimated since, as a rule, they do not cause serious disease in animals. Since the pig population in Russia is large, it is obvious that the lack of monitoring and insufficient study of swine influenza evolution constitutes a gap in animal influenza surveillance, not only for Russia, but globally. A 6 year joint effort enabled identification of SIV subtypes that circulate in the pig population of Russia's European geographic region. The swine influenza viruses isolated were antigenically and genetically diverse. Some were similar to human influenza viruses of A(H1N1)pdm09 and A(H3N2) subtype, while others were reassortant A(H1pdm09N2) and A(H1avN2) and were antigenically distinct from human H1N1 and H1N1pdm09 strains. Analysis of swine serum samples collected throughout the seasons showed that the number of sera positive for influenza viruses has increased in recent years. This indicates that swine populations are highly susceptible to infection with human influenza viruses. It also stresses the need for regular SIV surveillance, monitoring of viral evolution, and strengthening of pandemic preparedness.

5.
Viruses ; 13(1)2021 Jan 17.
Article in English | MEDLINE | ID: mdl-33477301

ABSTRACT

Human respiratory syncytial virus (RSV) is the most common cause of upper and lower respiratory tract infections in infants and young children. It is actively evolving under environmental and herd immunity influences. This work presents, for the first time, sequence variability analysis of RSV G gene and G protein using St. Petersburg (Russia) isolates. Viruses were isolated in a cell culture from the clinical samples of 61 children hospitalized (January-April 2014) with laboratory-confirmed RSV infection. Real-time RT-PCR data showed that 56 isolates (91.8%) belonged to RSV-A and 5 isolates (8.2%) belonged to RSV-B. The G genes were sequenced for 27 RSV-A isolates and all of them belonged to genotype ON1/GA2. Of these RSV-A, 77.8% belonged to the ON1(1.1) genetic sub-cluster, and 14.8% belonged to the ON1(1.2) sub-cluster. The ON1(1.3) sub-cluster constituted a minor group (3.7%). Many single-amino acid substitutions were identified in the G proteins of St. Petersburg isolates, compared with the Canadian ON1/GA2 reference virus (ON67-1210A). Most of the amino acid replacements were found in immunodominant B- and T-cell antigenic determinants of G protein. These may affect the antigenic characteristics of RSV and influence the host antiviral immune response to currently circulating viruses.


Subject(s)
Genetic Variation , Respiratory Syncytial Virus Infections/epidemiology , Respiratory Syncytial Virus Infections/virology , Respiratory Syncytial Virus, Human/physiology , Viral Envelope Proteins/genetics , Genotype , History, 21st Century , Humans , Phylogeny , Public Health Surveillance , Respiratory Syncytial Virus Infections/history , Respiratory Syncytial Virus, Human/classification , Respiratory Syncytial Virus, Human/isolation & purification , Russia/epidemiology , Sequence Analysis, DNA , Viral Envelope Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...