Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 21(2)2020 Jan 10.
Article in English | MEDLINE | ID: mdl-31936788

ABSTRACT

Preclinical studies have shown that exposure of the developing brain to inhalational anesthetics can cause neurotoxicity. However, other studies have claimed that anesthetics can exert neuroprotective effects. We investigated the mechanisms associated with the neurotoxic and neuroprotective effects exerted by inhalational anesthetics. Neuroblastoma cells were exposed to sevoflurane and then cultured in 1% oxygen. We evaluated the expression of proteins related to the unfolded protein response (UPR). Next, we exposed adult mice in which binding immunoglobulin protein (BiP) had been mutated, and wild-type mice, to sevoflurane, and evaluated their cognitive function. We compared our results to those from our previous study in which mice were exposed to sevoflurane at the fetal stage. Pre-exposure to sevoflurane reduced the expression of CHOP in neuroblastoma cells exposed to hypoxia. Anesthetic pre-exposure also significantly improved the cognitive function of adult wild-type mice, but not the mutant mice. In contrast, mice exposed to anesthetics during the fetal stage showed cognitive impairment. Our data indicate that exposure to inhalational anesthetics causes endoplasmic reticulum (ER) stress, and subsequently leads to an adaptive response, the UPR. This response may enhance the capacity of cells to adapt to injuries and improve neuronal function in adult mice, but not in developing mice.


Subject(s)
Anesthetics, Inhalation/pharmacology , Neuroprotection , Neurotoxicity Syndromes/etiology , Unfolded Protein Response , Anesthetics, Inhalation/adverse effects , Animals , Brain/drug effects , Brain/growth & development , Endoplasmic Reticulum Stress/drug effects , Female , Male , Mice , Mice, Inbred C57BL , Models, Animal , Neuroblastoma , Neurons/drug effects , Neuroprotective Agents/pharmacology , Sevoflurane/pharmacology
2.
Front Neurosci ; 12: 753, 2018.
Article in English | MEDLINE | ID: mdl-30443201

ABSTRACT

Background: Most neurodegenerative diseases are sporadic and develop with age. Degenerative neural tissues often contain intra- and extracellular protein aggregates, suggesting that the proteostasis network that combats protein misfolding could be dysfunctional in the setting of neurodegenerative disease. Binding immunoglobulin protein (BiP) is an endoplasmic reticulum (ER) chaperone that is crucial for protein folding and modulating the adaptive response in early secretory pathways. The interaction between BiP and unfolded proteins is mediated by the substrate-binding domain and nucleotide-binding domain with ATPase activity. The interaction facilitates protein folding and maturation. BiP has a recovery motif at the carboxyl terminus. The aim of this study is to examine cognitive function in model mice with an impaired proteostasis network by expressing a mutant form of BiP lacking the recovery motif. We also investigated if impairments of cognitive function were exacerbated by exposure to environmental insults, such as inhaled anesthetics. Methods: We examined cognitive function by performing radial maze testing with mutant BiP mice and assessed the additional impact of general anesthesia in the context of proteostasis dysfunction. Testing over 8 days was performed 10 weeks, 6 months, and 1 year after birth. Results: Age-related cognitive decline occurred in both forms of mice. The mutant BiP and anesthetic exposure promoted cognitive dysfunction prior to the senile period. After senescence, when mice were tested at 6 months of age and at 1 year old, there were no significant differences between the two genotypes in terms of the radial maze testing; furthermore, there was no significant difference when tested with and without anesthetic exposure. Conclusion: Our data suggest that aging was the predominant factor underlying the impairment of cognitive function in this study. Impairment of the proteostasis network may promote age-related neurodegeneration, and this is exacerbated by external insults.

3.
Front Mol Neurosci ; 10: 222, 2017.
Article in English | MEDLINE | ID: mdl-28769758

ABSTRACT

Protein quality control in the early secretory pathway is a ubiquitous eukaryotic mechanism for adaptation to endoplasmic reticulum (ER) stress. An ER molecular chaperone, immunoglobulin heavy chain-binding protein (BiP), is one of the essential components in this process. BiP interacts with nascent proteins to facilitate their folding. BiP also plays an important role in preventing aggregation of misfolded proteins and regulating the ER stress response when cells suffer various injuries. BiP is a member of the 70-kDa heat shock protein (HSP70) family of molecular chaperones that resides in the ER. Interaction between BiP and unfolded proteins is mediated by a substrate-binding domain and a nucleotide-binding domain for ATPase activity, leading to protein folding and maturation. BiP also possesses a retrieval motif in its carboxyl terminal. When BiP is secreted from the ER, the Lys-Asp-Glu-Leu (KDEL) receptor in the post-ER compartments binds with the carboxyl terminal KDEL sequence of BiP and returns BiP to the ER via coat protein complex I (COPI) vesicular transport. Although yeast studies showed that BiP retrieval by the KDEL receptor is not essential in single cells, it is crucial for multicellular organisms, where some essential proteins require retrieval to facilitate folding and maturation. Experiments in knock-in mice expressing mutant BiP with the retrieval motif deleted revealed a unique role of BiP retrieval by the KDEL receptor in neuronal development and age-related neurodegeneration.

4.
Cell Stress Chaperones ; 22(1): 77-85, 2017 01.
Article in English | MEDLINE | ID: mdl-27796797

ABSTRACT

Most human neurodegenerative diseases are sporadic and appear later in life. Aging and neurodegeneration are closely associated, and recent investigations reveal that endoplasmic reticulum (ER) stress is involved in the progression of these features. Immunoglobulin heavy chain-binding protein (BiP) is an ER chaperone that is central to ER functions. We produced knock-in mice expressing a mutant BiP that lacked the retrieval sequence to elucidate the effect of a functional defect in an ER chaperone in multicellular organisms. The homozygous mutant BiP mice died within several hours after birth because of respiratory failure with an impaired biosynthesis of pulmonary surfactant by alveolar type II cells. The heterozygous mutant BiP mice grew up to be apparently normal adults, although some of them revealed motor disabilities as they aged. Here, we report that the synthesis of a mitochondrial protein, pyrroline-5-carboxylate reductase 1 (PYCR1), is enhanced in the brains of homozygous mutant BiP mice. We performed a two-dimensional gel analysis followed by liquid chromatography-tandem mass spectrometry. PYCR1 was identified as one of the enhanced proteins. We also found that sublethal ER stress caused by tunicamycin treatment induced the synthesis of PYCR1 in murine fibroblasts. PYCR1 has been shown to be related to the aging process. Mutations in the PYCR1 gene cause cutis laxa with progeroid features and mental retardation. These findings suggest a pathophysiological interaction between ER stress and a mitochondrial function in aging.


Subject(s)
Heat-Shock Proteins/genetics , Pyrroline Carboxylate Reductases/metabolism , Activating Transcription Factor 6/antagonists & inhibitors , Activating Transcription Factor 6/metabolism , Animals , Cell Line , Electrophoresis, Gel, Two-Dimensional , Endoplasmic Reticulum Chaperone BiP , Endoplasmic Reticulum Stress/drug effects , Gene Knock-In Techniques , Heat-Shock Proteins/metabolism , Homozygote , Membrane Proteins/metabolism , Mice , Microscopy, Fluorescence , Mutagenesis , Protein Serine-Threonine Kinases/metabolism , Pyrroline Carboxylate Reductases/antagonists & inhibitors , Pyrroline Carboxylate Reductases/genetics , RNA Interference , RNA, Messenger/metabolism , RNA, Small Interfering/metabolism , Tandem Mass Spectrometry , Tunicamycin/toxicity , eIF-2 Kinase/metabolism , delta-1-Pyrroline-5-Carboxylate Reductase
5.
Anesth Analg ; 117(5): 1197-204, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24108262

ABSTRACT

BACKGROUND: The mechanisms by which inhaled anesthetics cause neurotoxicity are not well clarified. Exposure to inhaled anesthetics induces a release of Ca from the endoplasmic reticulum (ER) into the cytosol. Aberrant Ca mobilization may alter the protein-folding environment in the ER, causing ER stress. Binding immunoglobulin protein (BiP) is an ER chaperone that is critical to ER functions. Because ER stress leads to cellular dysfunction and apoptotic cell death, leading to diverse human disorders such as neurodegenerative diseases, we hypothesized ER stress may play a role in neurotoxicity caused by inhaled anesthetics. METHODS: We investigated the relationship between ER stress and neurodegeneration caused by inhaled anesthetics by using knock-in mice expressing a mutant BiP and neuronal culture cells. Neuronal culture cells and mutant BiP pregnant mice were exposed to 3% sevoflurane. The levels of BiP and C/EBP homologous protein (CHOP), a transcription factor related to cell death during ER stress, were evaluated by Western blot in neuronal cells and fetal brains delivered by cesarean delivery. Cell death in the fetal brains was evaluated with TUNEL staining. Statistical significance was assessed using unpaired t test and analysis of variance followed by multiple comparison tests. RESULTS: Sevoflurane exposure enhanced the expression of BiP and CHOP significantly in neuronal culture cells. A chemical chaperone that assisted ER functions reduced the expression of CHOP induced by sevoflurane exposure. In an in vivo study, we observed that an enhanced expression of CHOP and significantly more apoptotic cells in the brains of homozygous mutant BiP fetuses compared with the wild type. Mouse embryonic fibroblasts derived from the mutant BiP mice also exhibited enhanced levels of CHOP and cleaved caspase-3 after sevoflurane exposure. CONCLUSIONS: Sevoflurane exposure may cause ER stress, which is tolerated to some extent in wild-type cells. When this tolerance is limited, like in cells with mutant BiP, the exposure leads to cell death in the brain, suggesting that ER stress may partially mediate neurotoxicity caused by inhaled anesthetics. This study suggests that patients with certain conditions sensitive to ER stress such as ischemia, hypoxia, developing brain, or neurodegenerative diseases may be vulnerable to inhaled anesthetics.


Subject(s)
Anesthetics, Inhalation/toxicity , Calcium/metabolism , Endoplasmic Reticulum Stress , Gene Expression Regulation/drug effects , Methyl Ethers/toxicity , Neurons/drug effects , Animals , Cell Line , Cells, Cultured , Cytosol/metabolism , Endoplasmic Reticulum Chaperone BiP , Female , Fibroblasts/drug effects , Heat-Shock Proteins/chemistry , Male , Mice , Mice, Transgenic , Microscopy, Fluorescence , Protein Binding , Protein Folding , RNA, Small Interfering/metabolism , Sevoflurane , Transcription Factor CHOP/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...