Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Commun (Camb) ; 55(62): 9084-9087, 2019 Jul 30.
Article in English | MEDLINE | ID: mdl-31287464

ABSTRACT

An isothermal amplification circuit for specific DNA molecules was implemented in giant unilamellar vesicles. Using this circuit, over 5000-fold amplification of output DNAs was achieved, and the amplification behaviour depended on the concentration of input signal DNAs in a cell-sized compartment. Moreover, initiation of the amplification by photo-stimulation was demonstrated.


Subject(s)
DNA/analysis , Unilamellar Liposomes/chemistry , DNA/chemical synthesis , Nucleic Acid Amplification Techniques , Particle Size , Surface Properties
2.
Anal Bioanal Chem ; 411(17): 3789-3800, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31161320

ABSTRACT

MicroRNAs (miRNAs) in a blood sample are usually measured by quantitative reverse transcription PCR (qRT-PCR), microarray, and next-generation sequencing (NGS) which requires time-consuming pre-treatment, manual operation, and a stand-alone instrument. To overcome these disadvantages, miRNA testing has been developed using the automated analyzers routinely used in clinical laboratories. An isothermal DNA amplification reaction was adapted to a fully automated immunoassay analyzer that conducts extraction, amplification, and detection processes at 37 °C in 44 min. In a reaction vessel, a pre-designed single-stranded signal DNA was amplified in the presence of miRNA, using DNA templates, DNA polymerase, and nicking endonuclease. Then, the amplified signal DNA was hybridized by one DNA probe attached to a magnetic particle and another DNA probe labeled with acridinium ester. After the chemiluminescence reaction, luminescence intensity was automatically measured. The automated assays of cancer-related miRNAs were implemented on the analyzer with throughput of 66 tests per hour. In the assays with one-step amplification, three miRNAs (miR-21-5p, miR-18a-5p, and miR-500a-3p) at concentrations lower than 100 fM were automatically detected and the cross reactivity for miR-21-5p with fifteen similar miRNAs was not higher than 0.02%. In the assay with two-step amplification, detection sensitivity and amplification rate for miR-21-5p were 3 fM and 103-fold, respectively. The coefficient of variations (CVs) in the measurement at the target concentrations from 5 fM to 1000 pM were less than 8%. Furthermore, we also achieved automated nucleic acid detection in human serum. The proposed fully automated miRNA assays showed high sensitivity, low cross reactivity, and reproducibility suitable for clinical use. Graphical abstract.


Subject(s)
Immunoassay/methods , MicroRNAs/analysis , Nucleic Acid Amplification Techniques/methods , Automation , Humans , Luminescence
3.
Nucleic Acids Res ; 38(13): 4539-46, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20385575

ABSTRACT

In this work, we report the development and experimental validation of a coupled statistical thermodynamic model allowing prediction of the structural transitions executed by a novel DNA nanodevice, for quantitative operational design. The efficiency of target structure formation by this nanodevice, implemented with a bistable DNA molecule designed to transform between three distinct structures, is modeled by coupling the isolated equilibrium models for the individual structures. A peculiar behavior is predicted for this nanodevice, which forms the target structure within a limited temperature range by sensing thermal variations. The predicted thermal response is then validated via fluorescence measurements to quantitatively assess whether the nanodevice performs as designed. Agreement between predictions and experiment was substantial, with a 0.95 correlation for overall curve shape over a wide temperature range, from 30 C to 90 C. The obtained accuracy, which is comparable to that of conventional melting behavior prediction for DNA duplexes in isolation, ensures the applicability of the coupled model for illustrating general DNA reaction systems involving competitive duplex formation. Finally, tuning of the nanodevice using the current model towards design of a thermal band pass filter to control chemical circuits, as a novel function of DNA nanodevices is proposed.


Subject(s)
DNA/chemistry , Models, Statistical , Nanostructures/chemistry , Thermodynamics , Fluorescence Resonance Energy Transfer , Nucleic Acid Conformation
4.
Biosystems ; 83(1): 18-25, 2006 Jan.
Article in English | MEDLINE | ID: mdl-16343736

ABSTRACT

Parallelism is one of the major advantages of molecular computation. A large number of data encoded in DNA molecules can be processed simultaneously by molecular biology techniques, although only a single set of instructions has been implemented in a solution. We have developed a computing machine, called the "whiplash" machine, which is made of DNA polymerase and a hairpin DNA. This machine simulates a finite state machine, executing its own instructions encoded in the DNA moiety, and would thus be applicable to multiple-instruction operation in a solution. In the present study, we explored the feasibility of this novel type of parallelism by applying the whiplash machine in a computation of the directed Hamiltonian path problem. The possible paths in a given graph were represented with different instruction sets, which were then implemented separately by whiplash machines in a test tube. After an autonomous operation of the machines, only the machine that implemented the instruction set corresponding to the Hamiltonian path was recovered from the tube. On the basis of the efficiency of machine operation, which was experimentally determined, 10(10) different instruction sets could be implemented simultaneously in a 1-ml solution.


Subject(s)
Computers, Molecular , DNA-Directed DNA Polymerase/metabolism , DNA/chemistry , DNA/metabolism , DNA/genetics , Nucleic Acid Conformation
SELECTION OF CITATIONS
SEARCH DETAIL
...