Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Genet Sel Evol ; 56(1): 32, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38698323

ABSTRACT

BACKGROUND: Rendena is a dual-purpose cattle breed, which is primarily found in the Italian Alps and the eastern areas of the Po valley, and recognized for its longevity, fertility, disease resistance and adaptability to steep Alpine pastures. It is categorized as 'vulnerable to extinction' with only 6057 registered animals in 2022, yet no comprehensive analyses of its molecular diversity have been performed to date. The aim of this study was to analyse the origin, genetic diversity, and genomic signatures of selection in Rendena cattle using data from samples collected in 2000 and 2018, and shed light on the breed's evolution and conservation needs. RESULTS: Genetic analysis revealed that the Rendena breed shares genetic components with various Alpine and Po valley breeds, with a marked genetic proximity to the Original Braunvieh breed, reflecting historical restocking efforts across the region. The breed shows signatures of selection related to both milk and meat production, environmental adaptation and immune response, the latter being possibly the result of multiple rinderpest epidemics that swept across the Alps in the eighteenth century. An analysis of the Rendena cattle population spanning 18 years showed an increase in the mean level of inbreeding over time, which is confirmed by the mean number of runs of homozygosity per individual, which was larger in the 2018 sample. CONCLUSIONS: The Rendena breed, while sharing a common origin with Brown Swiss, has developed distinct traits that enable it to thrive in the Alpine environment and make it highly valued by local farmers. Preserving these adaptive features is essential, not only for maintaining genetic diversity and enhancing the ability of this traditional animal husbandry to adapt to changing environments, but also for guaranteeing the resilience and sustainability of both this livestock system and the livelihoods within the Rendena valley.


Subject(s)
Rinderpest , Selection, Genetic , Animals , Cattle/genetics , Rinderpest/genetics , Genetic Variation , Cattle Diseases/genetics , Disease Resistance/genetics , Polymorphism, Single Nucleotide , Adaptation, Physiological/genetics , Italy , Breeding , Epidemics
2.
Plant Sci ; 211: 1-7, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23987805

ABSTRACT

The aroma trait in apple is a key factor for fruit quality strongly affecting the consumer appreciation, and its detection and analysis is often an extremely laborious and time consuming procedure. Molecular markers associated to this trait can to date represent a valuable selection tool to overcome these limitations. QTL mapping is the first step in the process of targeting valuable molecular markers to be employed in marker-assisted breeding programmes (MAB). However, a validation step is usually required before a newly identified molecular marker can be implemented in marker-assisted selection. In this work the position of a set of QTLs associated to volatile organic compounds (VOCs) was confirmed and validated in three different environments in Switzerland, namely Wädenswil, Conthey and Cadenazzo, where the progeny 'Fiesta×Discovery' was replicated. For both QTL identification and validation, the phenotypic data were represented by VOCs produced by mature apple fruit and assessed with a Proton Transfer Reaction-Mass Spectrometer (PTR-MS) instrument. The QTL-VOC combined analysis performed among these three locations validated the presence of important QTLs in three specific genomic regions, two located in the linkage group 2 and one in linkage group 15, respectively, for compounds related to esters (m/z 43, 61 and 131) and to the hormone ethylene (m/z 28). The QTL set presented here confirmed that in apple some compounds are highly genetically regulated and stable across environments.


Subject(s)
Chromosome Mapping , Ethylenes/metabolism , Malus/genetics , Plant Growth Regulators/metabolism , Quantitative Trait Loci/genetics , Volatile Organic Compounds/metabolism , Environment , Genetic Linkage , Phenotype , Volatile Organic Compounds/chemistry , Volatile Organic Compounds/isolation & purification
3.
Nat Genet ; 42(10): 833-9, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20802477

ABSTRACT

We report a high-quality draft genome sequence of the domesticated apple (Malus × domestica). We show that a relatively recent (>50 million years ago) genome-wide duplication (GWD) has resulted in the transition from nine ancestral chromosomes to 17 chromosomes in the Pyreae. Traces of older GWDs partly support the monophyly of the ancestral paleohexaploidy of eudicots. Phylogenetic reconstruction of Pyreae and the genus Malus, relative to major Rosaceae taxa, identified the progenitor of the cultivated apple as M. sieversii. Expansion of gene families reported to be involved in fruit development may explain formation of the pome, a Pyreae-specific false fruit that develops by proliferation of the basal part of the sepals, the receptacle. In apple, a subclade of MADS-box genes, normally involved in flower and fruit development, is expanded to include 15 members, as are other gene families involved in Rosaceae-specific metabolism, such as transport and assimilation of sorbitol.


Subject(s)
Gene Duplication , Genes, Plant/genetics , Genome, Plant , Malus/genetics , Flowers/genetics , Flowers/growth & development , Fruit/genetics , Fruit/growth & development , Genetic Linkage , Genome-Wide Association Study , Malus/growth & development , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...