Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Hazard Mater ; 388: 121765, 2020 04 15.
Article in English | MEDLINE | ID: mdl-31928790

ABSTRACT

Alkali-activated binders (AABs), as a promising alternative to Portland cement, are now being used on a commercial scale in various applications around the world, including hazardous and radioactive waste immobilization. In this paper, the leaching resistance, strength, and nanostructural alteration of alkali-activated blast furnace slag (AABFS) doped with 2 % and 5 % cesium were investigated. The addition of cesium caused a significant increase in the compressive strength of AABFS, followed by mild strength reduction after leaching. AABFS can be considered a potentially efficient matrix for cesium immobilization, since the mean leachability index in both cases (2 % and 5 % of Cs added) was above the threshold value of 6. Both doping with Cs and leaching caused the transformation of the AABFS nanostructure. The majority of the aluminum that was released from the C-A-S-H gel due to leaching remained within the AABFS matrix, initiating gel reconstruction: the C-A-S-H gel was converted to C-S-H gel, and an additional N-(C)-A-S-H gel was also formed. Cesium was preferentially associated with the N-(C)-A-S-H gel rather than with the C-A-S-H gel. The results of this research seem to be in good agreement with the Cross-linked Substituted Tobermorite Model (CSTM).

2.
J Hazard Mater ; 181(1-3): 35-42, 2010 Sep 15.
Article in English | MEDLINE | ID: mdl-20554110

ABSTRACT

This paper investigates the properties of geopolymer obtained by alkali-activation of fly ash (FA), i.e. the influence of characteristics of the representative group of FA (class F) from Serbia, as well as that of the nature and concentration of various activators on mechanical and microstructural properties of geopolymers. Aqueous solutions of Ca(OH)(2), NaOH, NaOH+Na(2)CO(3), KOH and sodium silicate (water glass) of various concentrations were used as alkali activators. It was established that the nature and concentration of the activator was the most dominant parameter in the alkali-activation process. In respect of physical characteristics of FA, the key parameter was fineness. The geopolymer based on FA with the highest content of fine particles (<43 microm), showed the highest compressive strength in all cases. Regardless of FA characteristics, nature and concentration of the activator, the alkali-activation products were mainly amorphous. The formation of crystalline phases (zeolites) occurred in some cases, depending on the reaction conditions. The highest compressive strength was obtained using sodium silicate. Together with the increase of sodium silicate SiO(2)/Na(2)O mass ratio, the atomic Si/Al ratio in the reaction products was also increased. Under the experimental conditions of this investigation, high strength was directly related to the high Si/Al ratio.


Subject(s)
Alkalies/chemistry , Carbon/chemistry , Particulate Matter/chemistry , Polymers/chemistry , Coal Ash , Compressive Strength , Mechanical Phenomena , Silicates , Zeolites
SELECTION OF CITATIONS
SEARCH DETAIL
...